Gọi d laf khoảng cách từ O đến d
+ m +1 =0 => m =-1 => d =/ -m/ = 1 (1)
+m =0 => d =0 (2)
+ m khác - 1 ; 0
x =0 => y =-m A( 0 ; -m)
y =0 => x =\(\frac{m}{m+1}\) B(\(\frac{m}{m+1}\); 0)
Áp dụng HTL trong tam gics vuông OAB
=> \(\frac{1}{d^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\Rightarrow\frac{1}{d^2}=\frac{1}{m^2}+\frac{\left(m+1\right)^2}{m^2}\Rightarrow d^2=\frac{m^2}{\left(m+1\right)^2+1}=\frac{1}{2\left(\frac{1}{m^2}+\frac{1}{m}+\frac{1}{4}\right)+\frac{1}{2}}=\frac{1}{\left(\frac{1}{m}+\frac{1}{2}\right)^2+\frac{1}{2}}\le2\)
=> \(Maxd=\sqrt{2}\) khi m =-2 (3)
(1)(2)(3) => \(d=\sqrt{2}\)