Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phan Thanh Tịnh

Cho điểm D nằm trong tam giác đều ABC. Kẻ DM,DN,DP lần lượt vuông góc với AB,AC,BC. Chứng minh rằng khi điểm D di chuyển vị trí thì DM + DN + DP không đổi.

Đinh Thùy Linh
2 tháng 6 2016 lúc 23:43
Nối D với các đỉnh A;B;C của tam giác đều.Dễ thấy: \(S_{ABC}=S_{ABD}+S_{ACD}+S_{BCD}=\frac{1}{2}DM\cdot AB+\frac{1}{2}DN\cdot AC+\frac{1}{2}DP\cdot BC=\frac{1}{2}a\left(DM+DN+DP\right).\)trong đó a là cạnh của tam giác đều ABC.Diện tích và Cạnh tam giác ABC không thay đổi khi di chuyển điểm D nên: DM+DN+DP là không đổi.
Hoàng Lê Bảo Ngọc
2 tháng 6 2016 lúc 23:44

A B C D M N P

Gọi a là cạnh của tam giác đều ABC, \(S\)là diện tích của tam giác đều ABC , \(x\)là diện tích tam giác ADB , \(y\)là diện tích tam giác ADC , \(z\)là diện tích tam giác BDC (x,y,z > 0)

Ta có : \(x+y+z=S\)

Mặt khác : \(x=\frac{a.DM}{2}\Rightarrow DM=\frac{2x}{a}\) ; tương tự : \(DN=\frac{2y}{a}\)\(DP=\frac{2z}{a}\)

\(\Rightarrow DM+DN+DP=\frac{2x}{a}+\frac{2y}{a}+\frac{2z}{a}=\frac{2}{a}\left(x+y+z\right)=\frac{2S}{a}\)(không đổi)

Vậy khi D di chuyển thì DM + DN + DP không đổi (đpcm)

Trần Cao Anh Triết
3 tháng 6 2016 lúc 6:48

Ta có : $x=a^2-bc\Rightarrow ax=a^3-abc$x=a2bcax=a3abc$y=b^2-ac\Rightarrow by=b^3-abc$y=b2acby=b3abc$z=c^2-ab\Rightarrow cz=c^3-abc$z=c2abcz=c3abc

$\Rightarrow ax+by+cz=a^3+b^3+c^3-3abc$ax+by+cz=a3+b3+c33abc

Ta có : $a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc$a3+b3+c33abc=(a+b)3+c33ab(a+b)3abc

$=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)$=(a+b+c)(a2+b2+c2+2abacbc)3ab(a+b+c)

$=\left(a+b+c\right)\left(a^2-bc+b^2-ac+c^2-ab\right)=\left(a+b+c\right)\left(x+y+z\right)$=(a+b+c)(a2bc+b2ac+c2ab)=(a+b+c)(x+y+z)

Vậy : $\left(x+y+z\right)\left(a+b+c\right)=ax+by+cz$(x+y+z)(a+b+c)=ax+by+cz(đpcm)

Bạn lưu ý đề bài ở chỗ $y^2=b^2-ac$y2=b2acbạn ghi sai nhé, phải là $y=b^2-ac$y=b2ac

Bạn nhớ ghi thêm điều kiện x,y,z khác 0 nữa nhé :))

 
_ FTBOYS_
3 tháng 6 2016 lúc 7:13

Gọi a là cạnh của tam giác đều ABC, Slà diện tích của tam giác đều ABC , xlà diện tích tam giác ADB , ylà diện tích tam giác ADC , zlà diện tích tam giác BDC ﴾x,y,z > 0﴿ Ta có : x + y + z = S Mặt khác : x = 2 a.DM ⇒DM = a 2x ; tương tự : DN = a 2y ; DP = a 2z ⇒DM + DN + DP = a 2x + a 2y + a 2z = a 2 x + y + z = a 2S ﴾không đổi﴿ Vậy khi D di chuyển thì DM + DN + DP không đổi ﴾đpcm﴿

Phan Thanh Tịnh
3 tháng 6 2016 lúc 18:54

Nối DA,DB,DC thì SABD \(\frac{AB.DM}{2}\); SACD \(\frac{AC.DN}{2}\); SBCD \(\frac{BC.DP}{2}\)

=> SABC = SABD + SACD + SBCD = \(\frac{AB.DM}{2}+\frac{AC.DN}{2}+\frac{BC.DP}{2}\)

\(\frac{AB.\left(DM+DN+DP\right)}{2}\)(vì ABC là tam giác đều nên AB = AC = BC)

Trong công thức SABC \(\frac{AB.\left(DM+DN+DP\right)}{2}\), SABC và AB có số đo không đổi nên DM + DN + DP cũng không đổi (đpcm)


Các câu hỏi tương tự
Ma Nữ NSHN
Xem chi tiết
Phạm Thị Mai Anh
Xem chi tiết
Giang Thủy Tiên
Xem chi tiết
Giang Thủy Tiên
Xem chi tiết
Nguyễn Thanh Long
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Công Chúa Mắt Tím
Xem chi tiết
Trần Khả Như
Xem chi tiết