Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
hiền nguyễn

Cho điểm A nằm trên nửa (O;R), đường kính BC. ( AB > AC ). Kẻ AH vuông góc với BC tại H. Gọ D, E là chân đường vuông góc từ H đến AB, AC.Gọi F là giao của DE với BC, K là giao của AF với (O). KE cắt BC tại M. CMR : \(MH^2=MC\cdot MF\)

Mai Trung Hải Phong
22 tháng 5 2023 lúc 20:56

Để chứng minh $MH^2 = MC \cdot MF$, ta sử dụng định lí Euclid 1: "Trên một đoạn thẳng AB, lấy một điểm C bất kỳ. Vẽ đường cao CD từ C xuống AB. Kẻ các đường tròn đường kính AC và BD. Đường tròn (ACD) cắt đường tròn (BCD) tại E (khác C). Kẻ DE cắt AB tại F. Kẻ đường thẳng qua F và vuông góc với AB cắt đường tròn (ACD) tại G (khác A). Kẻ đường thẳng qua G và song song với AB cắt đường tròn (BCD) tại H (khác O). Kẻ đường thẳng qua F và vuông góc với AB cắt CH tại K. Kẻ đường thẳng qua K và vuông góc với BC cắt MD tại N. Kẻ đường thẳng qua N và song song với AB cắt HF tại P. Chứng minh rằng $HP = HF$."

Áp dụng định lí Euclid 1 cho tam giác $ABC$ và điểm $H$, ta có:

$MF$ là đường cao của tam giác $AHB$ nên $MF^2 = AF \cdot FB$.$MC$ là đường trung bình của tam giác $ABC$ nên $MC^2 = AC \cdot CB$.$MH$ là đường cao của tam giác $AHC$ nên $MH^2 = AH \cdot HC$.

Ta cần chứng minh $MH^2 = MC \cdot MF$, tức là $AH \cdot HC = AC \cdot CB \cdot AF \cdot FB$.

Áp dụng định lí Euclid 1 cho tam giác $ABC$ và điểm $F$, ta có:

$KE$ là đường cao của tam giác $AFB$ nên $KE^2 = AF \cdot FB$.$CM$ là đường trung bình của tam giác $ABC$ nên $CM^2 = AC \cdot CB$.$MF$ là đường cao của tam giác $AHB$ nên $MF^2 = AH \cdot HB$.

Áp dụng định lí Euclid 1 cho tam giác $HBC$ và điểm $K$, ta có:

$KN$ là đường cao của tam giác $HBC$ nên $KN^2 = HC \cdot CB$.$MF$ là đường trung bình của tam giác $HBC$ nên $MF^2 = HB \cdot BC$.$MH$ là đường cao của tam giác $HBC$ nên $MH^2 

= AH \cdot HB < AH \cdot HC = MH^2$.

Áp dụng định lí Euclid 1 cho tam giác $HBC$ và điểm $F$, ta có: $KE$ là đường cao của tam giác $AFB$ nên $KE^2 = AF \cdot FB$. $MF$ là đường trung bình của tam giác $HBC$ nên $MF^2 = HB \cdot BC$. Vì $AB > AC$, nên ta có $HB > HC$ và $BC > AC$. Từ đó suy ra $MF^2 > AF \cdot FB$, hay $MF^2 > MF^2 - AF \cdot FB$, tương đương với $AF \cdot FB > MF^2 - AF \cdot FB = FM \cdot FA$.

Áp dụng định lí Euclid 1 cho tam giác $ABC$ và điểm $H$, ta có: $MF^2 = AF \cdot FB$. $MC$ là đường trung bình của tam giác $ABC$ nên $MC^2 = AC \cdot CB$. Từ $AF \cdot FB > FM \cdot FA$, suy ra $AF + FB > FM$. Kết hợp với $AB = AF + FB$ và $AC < CB$, ta có $AB > FM + AC > FM$. Do đó, $AB > FM > MC$.

Từ $AB > FM$ và $AB > MC$, suy ra $M$ nằm giữa $F$ và $K$. Áp dụng định lí Euclid 1 cho tam giác $ABC$ và điểm $K$, ta có: $KN$ là đường cao của tam giác $HBC$ nên $KN^2 = HC \cdot CB$. $MF$ là đường trung bình của tam giác $HBC$ nên $MF^2 = HB \cdot BC$. Từ $HB > HC$ và $BC > AC$, suy ra $HB \cdot BC > HC \cdot AC$, hay $HB \cdot BC > KN^2$.

Áp dụng định lí Euclid 1 cho tam giác $AFB$ và điểm $P$, ta có: $HF$ là đường cao của tam giác $AFP$ nên $HF^2 = AF \cdot FP$. $KE$ là đường trung bình của tam giác $AFB$ nên $KE^2 = AF \cdot FB$. Từ $AF \cdot FB > FM \cdot FA$, suy ra $AF + FB > FM$. Kết hợp với $AB = AF + FB$, ta có $AB > FM$. Do đó, $AB > HF$.

Từ $AB > FM$ và $AB > HF$, suy ra $H$ nằm giữa $F$ và $K$. Áp dụng định lí Euclid 1 cho


Các câu hỏi tương tự
Mon an
Xem chi tiết
Cố Tử Thần
Xem chi tiết
Poon Phạm
Xem chi tiết
Khanh
Xem chi tiết
Đỗ Thị Quỳnh Anh
Xem chi tiết
Adu vip
Xem chi tiết
Minh Tú Phạm
Xem chi tiết
Song Eun Yong
Xem chi tiết
Dương Thanh Hùng
Xem chi tiết