Gọi C là điểm đối xứng A qua delta, nối O với C cắt delta tại D
Với B là điểm bất kì trên delta, ta có \(AB=BC\)
Trong tam giác ABC, theo BĐT tam giác:
\(OB+BC\ge OC\Rightarrow OB+AB\ge OC\Rightarrow OA+AB+AB\ge OA+OC\)
Dấu "=" xảy ra khi B trùng D hay chu vi OAB đạt min khi B là giao điểm của OC và delta
Gọi I là hình chiếu của A lên delta \(\Rightarrow\) pt đường thẳng AI có dạng:
\(1\left(x-1\right)-2\left(y+2\right)=0\Leftrightarrow x-2y-5=0\)
\(\Rightarrow\) tọa độ I là nghiệm \(\left\{{}\begin{matrix}2x+y-4=0\\x-2y-5=0\end{matrix}\right.\) \(\Rightarrow I\left(\dfrac{13}{5};\dfrac{-6}{5}\right)\)
\(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_C}{2}\\y_I=\dfrac{y_A+y_C}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_C=2x_I-x_A=\dfrac{21}{5}\\y_C=2y_I-y_A=\dfrac{-2}{5}\end{matrix}\right.\) \(\Rightarrow C\left(\dfrac{21}{5};\dfrac{-2}{5}\right)\)
\(\Rightarrow\overrightarrow{OC}=\left(\dfrac{21}{5};\dfrac{-2}{5}\right)\) \(\Rightarrow\) đường thẳng AC có 1 vecto pháp tuyến là \(\left(2;21\right)\)
\(\Rightarrow\) pt đường thẳng OC: \(2x+21y=0\)
\(\Rightarrow\) tọa độ B là nghiệm của hệ: \(\left\{{}\begin{matrix}2x+y-4=0\\2x+21y=0\end{matrix}\right.\) \(\Rightarrow B\left(\dfrac{21}{10};\dfrac{-1}{5}\right)\)