\(\dfrac{a}{b}=\dfrac{c}{d}=>ad=bc=>ac+ad=ac+bc\)
\(=>ac\left(c+d\right)=c\left(a+b\right)=>\dfrac{a+b}{c+d}=\dfrac{a}{c}\)
\(\dfrac{a}{b}=\dfrac{c}{d}=>ad=bc=>ac+ad=ac+bc\)
\(=>ac\left(c+d\right)=c\left(a+b\right)=>\dfrac{a+b}{c+d}=\dfrac{a}{c}\)
a) Cho \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) CMR: \(\dfrac{5a+3b}{5a-3b}\)=\(\dfrac{5c+3d}{5c-3d}\)
b) CMR: Nếu \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì : \(\dfrac{a}{b}\)=\(\dfrac{3a+2c}{3b+2d}\)
c) CMR: Nếu \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì \(\dfrac{7a^2+3ab}{11a^2-8b^2}\) = \(\dfrac{7c^2+3cd}{11c^{2^{ }}-8d^2}\)
Cho a,b,c,d>0. CMR: 1 <\(\dfrac{a}{a+b+c}\)+\(\dfrac{b}{b+c+d}\)+\(\dfrac{c}{c+d+a}\)+\(\dfrac{d}{d+a+b}\)< 2
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). CMR:
\(\dfrac{a+b}{a}=\dfrac{c+d}{c}\)
1. Cho tỉ lệ thức \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\). CMR:
a) \(\dfrac{3a+5c}{3b+5d}\) = \(\dfrac{a-2c}{b-2d}\).
b) \(\dfrac{a^2-b^2}{ab}\) = \(\dfrac{c^2-d^2}{cd}\).
c) \(\dfrac{\left(a+b\right)^2}{a^2+b^2}\) = \(\dfrac{\left(c+d\right)^2}{c^2+d^2}\).
d) \(\left(\dfrac{a+b}{c+d}\right)^3\) = \(\dfrac{a^3+b^3}{c^3+d^3}\).
Gíup mình với cảm ơn các bạn rất nhiều!!!!!!!!!
cho\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\). CMR \(\dfrac{ab}{cd}\)=\(\dfrac{a^2-b^2}{c^2-d^2}\)
Cho các số hữu tỉ với mẫu dương, trong đó \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\). CMR:
a) ad < bc.
b) \(\dfrac{a}{b}\) < \(\dfrac{a+c}{b+d}\) < \(\dfrac{c}{d}\).
Gỉai giúp mình với cảm ơn các bạn nhiều!!!!!!!
Ai giải đúng cho 1 tick!
Cho a+b+c+d khác0 và \(\dfrac{a}{b+c+d}\)=\(\dfrac{b}{a+c+d}\)=\(\dfrac{c}{a+b+d}\)=\(\dfrac{d}{a+b+c}\)
Tìm giá trị của A=\(\dfrac{a+b}{c+d}\)+\(\dfrac{b+c}{a+d}\)+\(\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
Cho a+b+c+d=2000 và \(\dfrac{1}{a+b+c}+\dfrac{1}{b+c+d}+\dfrac{1}{c+d+a}+\dfrac{1}{d+a+b}=\dfrac{1}{40}\)
Tính S=\(\dfrac{a}{b+c+d}+\dfrac{b}{c+d+a}+\dfrac{c}{d+a+b}+\dfrac{d}{a+b+c}\)
Cho a + b + c ≠ 0 và \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}\) tính giá trị của biểu thức \(A=\dfrac{a+b}{c+d}+\dfrac{b+c}{a+d}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\).CMR (a+2c)(b+d) = (a+c)(b+2d)