Mọi người giải giúp mình với nhé! Cảm ơn ạ^_^
1.Cho đường tròn tâm O Đường kính AB và 1 dây AC bằng bán kính đường tròn tính các góc của tam giác ABC
2.Cho tam giác ABC và M trung điểm BC VẼ MD vuông AB và ME vuông AC Trên các tia BD và CE lần lượt lấy các điểm I, K sao cho D trung điểm BI E trung điểm CK Chứng minh rằng 4 điểm B,I,K,C cùng nằm trên 1 đường tròn.
Cho đường tròn (o) và điểm B nằm bên ngoài đường tròn. Từ B vẽ tiếp tuyến BA,BC đến đường tròn(A,C là tiếp điểm), và vẽ cát tuyến BDE
sao cho D nằm giữa B và E (D,E thuộc (O)). Gọi F là trung điểm của ED.
a) Chứng minh: điểm A,B,C,F,O cùng thuôc một đường tròn
b) Gọi H là giao điểm của OB và AC. Chứng minh: BH.BO=BD.BE
Gọi I là giao điểm của AC và DE. Chứng minh tứ giác OHDE nội tiếp và ID.EB=EI.DB
d) Gọi K là giao điểm của đoạn thẳng OB với đường tròn. Chứng minh: EK là tia phân giác của DE^H
Cho đường tròn (O,R) và một điểm A nằm ngoài đường tròn sao cho OA=2R, Vẽ các tiếp tuyến AB, AC với (O,R), B và C là các tiếp điểm.
a) CM: 4điểm A,B,O,C cùng thuộc một đường tròn
b) Kẻ đường kính BD của đường tròn (O,R). CM: DC//OA
c) Đường trung trực của BD cắt AC và CD lần lượt tại M và N. CM: tứ giác OCNA là hình thang cân.
d) Gọi I là giao điểm của OA và(O). K là giao điểm của tia MI và AB. Tính theo R diện tích tứ giác AKOM
Giải giúp tớ với, cần câu trả lời gấp ạk, thanks
1 / Cho tam giác ABC, góc A=90 độ, AC=3AB. D, E thuộc AC sao cho AD=DE=EC.
a/ Gọi M là điểm đối xứng với B qua D. Chứng minh rằng ABCM là tứ giác nội tiếp
b/ Chứng minh rằng góc ACB+ góc AEB= 45 độ
2/ Cho đường tròn tâm O bán kính R=3cm và một điểm S cố định bên ngoài đường tròn sao cho SO=5cm. Vẽ tiếp tuyến SA với A là tiếp điểm và cát tuyến SCB không qua tâm sao cho O nằm trong góc ASB ( C nằm giữa S và B ). Gọi H là trung điểm của CB
a) Chứng minh rằng tứ giác SAOH nội tiếp một đường tròn
b) Tính chu vi và diện tích của đường tròn ngoại tiếp tứ giác SAOH
c) Tính tích SC.SB
3/ Cho tam giác ABC nội tiếp đường tròn tâm O đường kính AB=2R. Lấy H là trung điểm của dây BC. Tia OH cắt đường tròn tại D, AD lần lượt cắt tiếp tuyến Bx của đường tròn tại E và F
a) Chứng minh AD là tia phân giác của góc CAB
b) Chứng minh tứ giác ECDF là tứ giác nội tiếp
c) Cho CD= R=căn10cm. Tính diện tích của hình viên phân giới hạn bởi cung CDB với dây CB
4/ Cho tam giác ABC cân ở A nội tiếp đường tròn O đường kính I. Gọi E là trung điểm của AB. K là trung điểm của OI. Chứng minh rằng AEKC là tứ giác nội tiếp
5/Cho tam giác ABC. Các đường phân giác trong của B, C cắt nhau tại S, các đường phân giác ngoài của B và C cắt nhau tại E. Chứng minh rằng BSCE là 1 tứ giác nội tiếp.
CHo đường tròn (O) có đường kính AB. Gọi C là điểm chính giữa của cung AB, D là điểm tùy ý trên cung nhỏ AC (D không trùng với A và C), I là giao điểm của CO và BD. Gọi H là chân đường vuông góc kẻ từ C xuống BD.
a) Chứng minh tứ giác BCHO nội tiếp trong một đường tròn
b) Chứng mịnh tam giác HCD vuông cân
c) Gọi K là diểm bất kì trên đoạn thẳng IC (K không trùng với I và C), các đường thẳng BK và CK cắt các cạnh CD và CB lần lượt tại M và N. Chứng minh rằng \(\frac{CK}{KI}=\frac{CM}{MD}+\frac{CN}{NB}\)
cho tam giác nhọn ABC, các đường cao BD và CE, O là trung điểm BC.
a/ chứng minh 4 điểm B, E, D, C cùng thuộc đường tròn (O)
b/ chứng minh ED < BC
c/ gọi H là giao điểm của BD và CE. Trên 2 đoạn HB, HC lấy M, N sao cho AMC =ANB = 900. chứng minh AMN là tam giác cân
Cho điểm M nằm ngoài đường tròn (O;R). Vẽ tiếp tuyến MA và cát tuyến MCB (MB > MC) nằm khác phía đối với đường thẳng MO. Đường tròn tâm I đường kính BC cắt AB, AC lần lượt tại E và D. BD cắt CE tại H, K là trung điểm AH.
a) Chứng minh tứ giác MAOI nội tiếp, xác định tâm S của đường tròn ngoại tiếp tứ giác này; và K là tâm đường tròn ngoại tiếp của tam giác ADE.
b) Chứng minh: OA song song KI.
c) Đường tròn (I;IK) cắt (S) tại F sao cho F nằm trên nửa mặt phẳng có bờ là MB không chứa điểm A. Chứng minh A, H, F thẳng hàng.
d) AH cắt BC tại G. Tia GD cắt MA tại N. Chứng minh tứ giác ANFB là tứ giác nội tiếp.
Cho đường tròn tâm O, đường kính AB. M là một điểm nằm trên đoạn thẳng OB (M khác O và khác B). Đường thẳng d qua M và vuông góc với AB cắt đường tròn (O) tại C, D. Trên tia MD lấy điểm E nằm ngoài đường tròn (O). Đường thẳng AE cắt (O) tại điểm thứ hai I khác A, đường thẳng BE cắt (O) tại điểm thứ hai K khác B. Gọi H là giao điểm của BI và d.
a. Chứng minh tứ giác MBEI nội tiếp được trong một đường tròn. Xác định tâm của đường tròn này.
b. Chứng minh các tam giác IEH và MEA đồng dạng với nhau.
c. Chứng minh EC.ED = EH.EM
d Chứng minh khi E thay đổi, đường thẳng HK luôn đi qua một điểm cố định
Bài 5 Cho nửa đường tròn (O) đường kính AB. Trên tia dối của tia AB lấy một điểm M. Vẽ tiếp tuyến MC với nửa đường tròn. Gọi H là hình chiếu của C trên AB
a, c/m tia CA là tia phân giác của góc MCH
b, Giả sử MA = a, MC = 2a. Tính AB và CH theo a
Bài 6 Cho tam giác ABC ngoại tiếp đường tròn (O). Gọi D,E,F lần lượt là các tiếp điểm của đường tròn trên các cạnh AB,BC,CA. Gọi M,N,P lần lượt là các giao điểm của đường tròn (O) với các tia OA,OB,OC. c/m các điểm M,N,P lần lượt là tâm của đường tròn nội tiếp các tam giác ADF, BDE và CEF