Gọi M là trung điểm AB, do \(M\in d_2\Rightarrow M\left(1;a\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x_B=2x_M-x_A=-1\\y_B=2y_M-y_A=2a-1\end{matrix}\right.\)
Do \(B\in d_1\Rightarrow2\left(-1\right)-\left(2a-1\right)-1=0\Rightarrow a=-1\) \(\Rightarrow B\left(-1;-3\right)\)
Gọi N là trung điểm AC, do \(N\in d_1\Rightarrow N\left(b;2b-1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x_C=2x_N-x_A=2b-3\\y_C=2y_N-y_A=4b-3\end{matrix}\right.\)
Do \(C\in d_2\Rightarrow2b-3-1=0\Rightarrow b=2\Rightarrow C\left(1;5\right)\)
\(\overrightarrow{BA}=\left(4;4\right)\Rightarrow\) đường thẳng AB có 1 vtpt là \(\overrightarrow{n_{AB}}=\left(1;-1\right)\)
\(\Rightarrow\) pt AB: \(1\left(x-3\right)-1\left(y-1\right)=0\Leftrightarrow x-y-2=0\)
\(\overrightarrow{AC}=\left(-2;4\right)\Rightarrow\) đường thẳng AC có 1 vtpt \(\overrightarrow{n_{AC}}=\left(2;1\right)\)
\(\Rightarrow\) pt AC: \(2\left(x-3\right)+1\left(y-1\right)=0\Leftrightarrow2x+y-6=0\)
\(\overrightarrow{BC}=\left(2;8\right)\Rightarrow\overrightarrow{n_{BC}}=\left(4;-1\right)\)
\(\Rightarrow\) pt BC: \(4\left(x+1\right)-1\left(y+3\right)=0\Leftrightarrow4x-y+1=0\)