Cho dãy tỉ số bằng nhau: a1/a2=a2/a3=a3/a4=...=a2014/a2015. Cmr ta có dẳng thức:a1/a2015=(a1+a2+a3+...+a2014/a2+a3+a4+...+a2015).
Cho a1;a2;a3;a4;a5;.......;a2015 thuộc N (1;2;3;......;2015 là số thứ tự)
biết a1+a2+a3+.........+a2015=2015*2016
Chứng minh rằng a1^3 +a2^3 +a3^3 +...........+a2015^3 chia hết cho 6
cho 2017 số nguyên a a1,a2,a3,..,a2017 có tổng bằng 0 và thỏa mãn a1+a2=a3+a4=a4+a5=..=a2015+a2016=a2017+a1=1 .tìm a1,a2,a2017
Cho 2016 số a1;a2;a3;...;a2016 mà mỗi số bằng 1 hoặc -1. Hỏi tổng S=a1-a2+a3-a4+a5-a6+....+a2015-a2016 có thể nhận bao nhiêu giá trị khác nhau
Cho đoạn thẳng AB, lấy 2015 điểm khác nhau, đặt tên theo thứ tự từ A đến B là A1,A2,A3,A4,A5,...,A2015.lấy điểm M không nằm trên đoạn thẳng AB . Nối M với các điểm A, A1,A2,A3,..., A2015,B.Tính số tam giác tạo thành.
Cho 5 số nguyên phân biệt a1 , a2 , a3 , a4 , a5 . Xét tích số sau :
A=(a1-a2)(a1-a3)(a1-a4)(a1-a5)(a2-a3)(a2-a4)(a2-a5)(a3-a4)(a3-a5)(a4-a5)
CMR A luôn chia hết cho 288
CMR :(a1-a2)(a1-a3)(a1-a4)(a2-a3)(a2-a4)(a3-a4) chia het cho 12
Cho 2015 số nguyên: a1; a2; a3; ...; a2015 và b1; b2; b3; ...; b2015 là các hoán vị của nó. Chứng minh (â1-b1).(â2-b2).(a3-b3)...(a2015-b2015) là số chẵn
cmr:(a1-a2)(a1-a3)(a1-a4)(a2-a3)(a2-a4)(a3-a4) chia hết cho 12