Cho day so \(x_1,x_2,x_3,...\) thoa man \(x_{n+1}=\frac{x_n-1}{x_n+1}\) voi n=1, 2, 3,...
Biet \(x_{2015}=\frac{-1}{3}\), Tinh gia tri cua B=\(x_{10}+x_3+x_{2016}\)
cho 2011 số tự nhiên thõa mãn điều kiện
\(\frac{1}{x_1^{11}}+\frac{1}{x_2^{11}}+\frac{1}{x_3^{11}}+...+\frac{1}{x_{2011}^{11}}=\frac{2011}{2048}\)
tính tổng \(M=\frac{1}{x_1^1}+\frac{1}{x_2^2}+\frac{1}{x_3^3}+...+\frac{1}{x_{2011}^{2011}}\)
cho 2011 số tự nhiên x1;x2;...;x2011 thỏa mãn đk:
\(\frac{1}{x_1^{11}}+\frac{1}{x_2^{11}}+...+\frac{1}{x_{2011}^{11}}=\frac{2011}{2048}\) tính:
M=\(\frac{1}{x_1^1}+\frac{1}{x_2^2}+...+\frac{1}{x_{2011}^{2011}}\)
Cho
Khi đó =
(mọi người ơi giải giúp tớ bài này với cần gấp lắm rồi !)
Chứng minh răng nếu \(x_1+\frac{1}{x_1}=x_2+\frac{1}{x_2}=...=x_n+\frac{1}{x_n}\)
thì ta có \(x_1=x_2=...=x_n\)hoặc \(\left|x_1x_2...x_n\right|=1\)
Cho dãy số x1; x2; x3; ... thỏa mãn xn+1 =\(\frac{x_n-1}{x_n+1}\)với n = 1;2;3; ... Biết x2015 = \(\frac{-1}{3}\). Tính B = x10 + x3 + x2016 (Nếu sai giá trị của x2015 thì sửa giúp mình nhé )
CMR: nếu \(x_1=\frac{1}{x_2}=x_2+\frac{1}{x_3}=x_3+\frac{1}{x_4}=.....=x_n+\frac{1}{x_1}\)
thì \(x_1=x_2=x_3=...=x_n\)
hoặc \(\left|x_1.x_2.x_3......x_n\right|=1\)
Ai nhanh mk tik
Giúp mk với:
1) Cho a, b, c là các số thực dương thỏa mãn a + b + c = 3. Tìm giá trị nhỏ nhất của biểu thức P = \(2\left(ab+bc+ca\right)-abc\)
2)Giả sử dãy số thực có thứ tự \(x_1\le x_2\le...\le x_{204}\) thỏa mãn các điều kiện \(x_1+x_2+...+x_{204}=0\) và \(|x_1|+|x_2|+...+x_{204}|=2019.\)Chứng minh rằng \(x_{204}-x_1\ge\frac{2019}{102}\)
Giảu hệ phương trình (2000 ẩn số):
\(2x_1=x_2+\frac{1}{x_2}\left(1\right)\)
\(2x_2=x_3+\frac{1}{x_3}\left(2\right)\)
..................................
\(2x_{1999}=\frac{1}{x_{2000}}+x_{2000}\left(1999\right)\)
\(2x_{2000}=x_1+\frac{1}{x_1}\left(2000\right)\)