Cho dãy số ( xn) xác định bởi \(x_1=\frac{1}{2},x_{n+1}=x_n^2+x_n,\forall n\ge1.\)Đặt \(S_n=\frac{1}{x_1+1}+\frac{1}{x_2+1}+...+\frac{1}{x_n+1}.\)Tìm lim Sn
Tìm các giới hạn sau:
1/ \(\lim\limits_{x->-1}\) \(\dfrac{x^{2019}+1}{x^2+x}\)
2/ \(\lim\limits_{x->1}\) \(\dfrac{x+x^2+...+x^n-n}{x-1}\)
\(lim_{x->-\infty}\left(\sqrt{x^2+1}+x-1\right)\\ lim\dfrac{\sqrt{4n^2+n-1}+n}{\sqrt{n^4+2n^3-1}-n}\)
tính giới hạn của hàm số
lim x->0 : \(\frac{\left(\sqrt{1+x^2}+x\right)^n-\left(\sqrt{1+x^2}-x\right)^n}{x^2}\)
1.lim(\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{n\left(n+1\right)}\))
2.Tìm tất cả các giá trị của a sao cho lim\(\frac{4^n+a.5^n}{\left(2a-1\right).5^n+2^n}\)=1
3. Cho \(a\in R\)và lim(\(\sqrt{n^2+an+4}-n+1=5\)).Tìm a
4.Cho\(Lim_{(x->2)}f\left(x\right)=5\). Tìm giới hạn \(lim_{\left(x->2\right)}\sqrt{[f\left(x\right)-3]x}\)
Câu 1: Tính giới hạn
a, lim\(\dfrac{2-5^{n-2}}{3^n=2.5^n}\) b,lim\(\dfrac{2-5^{n+2}}{3^n-2.5^n}\)
Câu 2 :CMR :\(x^4+x^3-3x^2+x+1=0\) có ít nhất một nghiệm âm lớn hơn -1
Câu 3: Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và các cạnh bên đều bằng a. Gọi M,N lần lượt là trung điểm của AD và SD. Tìm số đo góc giữa 2 đường thẳng MN và SC
Cho dãy số \(\left(u_n\right)\) xác định bởi \(\left\{{}\begin{matrix}u_1=\sqrt{2}\\u_{n+1}=\sqrt{u_n+2},n\ge1\end{matrix}\right.\). Tính \(\lim\limits_{u_n}\)
Xét hai dãy số ( u n ) , ( v n ) , n ∈ N * , được xác định bởi u 1 = 1 , v 1 = 2 , u n + 1 = u n + 1 v n , v n + 1 = v n + 1 u n . Đặt S = u 10 + v 10 . Khẳng định nào sau đây là đúng?
A. S < 4 5
B. S < 2 5
C. S > 4 5
D. S > 8 5
Cho dãy số u n được xác định bởi u 1 = 1 ; u n + 1 = 1 2 u n + 2 u n với mọi n ≥ 1 . Tìm lim u n
A. 1
B. -1
C. 2
D. - 2