Ta có: u n = n 2 + 1 − n = n 2 + 1 − n n 2 + 1 + n n 2 + 1 + n = 1 n 1 + 1 n 2 + 1 = 1 n . 1 1 + 1 n 2 + 1
Vì lim 1 n = 0 , lim 1 1 + 1 n 2 + 1 = 1 2 nên lim u n = 0 .
Chọn đáp án A.
Ta có: u n = n 2 + 1 − n = n 2 + 1 − n n 2 + 1 + n n 2 + 1 + n = 1 n 1 + 1 n 2 + 1 = 1 n . 1 1 + 1 n 2 + 1
Vì lim 1 n = 0 , lim 1 1 + 1 n 2 + 1 = 1 2 nên lim u n = 0 .
Chọn đáp án A.
Cho dãy số u(n)=\(1/(2*4) +1/(5*7)+...+1/((3n-1)*(3n+1))\)
Tính Lim u(n).
Dãy số thỏa mãn với mọi . Tính lim un
.
cho dãy số (un):\(\left\{{}\begin{matrix}u_1=2010\\u^2+2019u_n-2011u_{n+1}+1=0\end{matrix}\right.\)
tìm lim\(\left(\Sigma^n_{i=1}\dfrac{1}{u_i+2010}\right)\)
Cho dãy số (un) với un = \(\frac{1}{1.3}\)+ \(\frac{1}{3.5}\)+...+ \(\frac{1}{\left(2n-1\right)\left(2n+1\right)}\)Ta có lim un bằng bao nhiêu ?
Cho dãy số u ( n ) xác định bởi u ( 1 ) = 1 ; u ( m + n ) = u ( m ) + u ( n ) + m n , ∀ m , n ∈ ℕ * . Tính u ( 2017 )
A. 2035153
B. 2035154
C. 2035155
D. 2035156
cho dãy số \(\left\{{}\begin{matrix}u_1=2\\u_{n+1}=\dfrac{1}{2}\left(u^2_n+1\right)\end{matrix}\right.\) tìm lim\(\Sigma^n_{i=1}\dfrac{1}{u_i+1}\)
Cho dãy số ( u n ) với u n = 1 + 2 + 3 + 4 + . . . + n ( 1 + 3 + 3 2 + 3 3 + . . . + 3 n ) . n + 1 . Tính l i m u n
A. 0
B. 2
C. 1 3
D. 1
Cho dãy số u n với u n = n + 1 n + 2 . Khi đó, lim u n = ?
A. 1 2
B. 2 2
C. 0
D. + ∞