Cho dãy số: \(\frac{1}{2};\frac{1}{3};\frac{1}{4};......;\frac{1}{2013};\frac{1}{2014};\frac{1}{2015}\)
Xóa đi hai số bất kì rồi viết thêm một số mới bằng tích của hai số đó cộng với tổng của chúng.Tiếp tục làm như thế cho đến khi chỉ còn một số.
Số còn lại đó là
Cho dãy số:\(\frac{1}{2};\frac{1}{3};...;\frac{1}{2014};\frac{1}{2015}\)
Xóa đi hai số bất kì rồi viết thêm một số mới bằng tích của hai số đó cộng với tổng của chúng.Tiếp tục làm như thế cho đến khi chỉ còn một số.
Số còn lại đó là bao nhiêu?
Cho dãy số \(\frac{1}{2};\frac{1}{3};\frac{1}{4};...;\frac{1}{2013};\frac{1}{2014};\frac{1}{2015}.\)
Xoá đi hai chữ số bất kì rồi viết thêm một số mới bằng tích của chúng công với tổng của chúng.Tiếp tục làm như thế cho đến khi chỉ còn một số.Tìm số còn lại.
Cho dãy số:1/2;1/3;1;4;...;1/2014;1/2015 .
Xóa đi hai số bất kì rồi viết thêm một số mới bằng tích của hai số đó cộng với tổng của chúng.Tiếp tục làm như thế cho đến khi chỉ còn một số.
Số còn lại đó la
7. Cho A là tập hợp gồm 6 phần tử bất kì của tập hợp { 0; 1; 2;...; 14} . Chứng minh rằng tồn tại 2 tập hợp con B1, B2 của A \(\left(B_1\ne B_2\ne\varnothing\right)\)sao cho tổng các phần tử của B1 bằng tổng các phần tử của B2.
8. Người ta viết lên bảng 2013 số \(\frac{1}{1};\frac{1}{2};\frac{1}{3};...;\frac{1}{2013}\). Mỗi lần thực hiện xóa đi hai số x, y bất kì thì thêm vào 1 số mới \(z=\frac{xy}{x+y+1}\)
, giữ nguyên các số còn lại. Sau 2012 lần xóa trên bảng còn lại một số . Tìm số đó
Cho dãy số: .
Xóa đi hai số bất kì rồi viết thêm một số mới bằng tích của hai số đó cộng với tổng của chúng.Tiếp tục làm như thế cho đến khi chỉ còn một số.
Số còn lại đó là
Cho một dãy các số tự nhiên liên tiếp bắt đầu từ 1. Người ta xóa đi một số thì trung bình cộng của các số còn lại bằng \(35\frac{7}{17}\). Tìm số bị xóa.
Người ta viết lên bảng các số từ 1 đến 2015 . Sau đó , mỗi người được phép xóa 2 số bất kỳ trên bảng và thay vào đó là một số mới là hiệu của chúng . Cho đến khi trên bảng chỉ còn một số thì người ta viết thêm lên bảng các số từ 1 đến 2015 . Sau đó , mỗi người được phép xóa 2 số bất kỳ trên bảng và thay vào đó là một số mới là tổng của chúng . Cho đến khi trên bảng chỉ còn một số thì người ta viết thêm lên bảng các số từ 1 đến 2015 . Sau đó , mỗi người được phép xóa 2 số bất kỳ trên bảng và thay vào đó là một số mới là hiệu của chúng . . .
Người ta làm như vậy cả thảy 2015 lần . Hỏi số cuối cùng còn lại trên bảng có phải là số 0 không ? Vì sao ?
bạn nam viết lên bảng các số TN từ 1 đến 2019, sau đó thực hiện thí nghiệm xóa 2 số bất kì và thay thế chúng bằng tổng lập phương 2 số cứ tiếp tục đến khi còn lại 1 số trên bảng. Hỏi số đó có chia hết cho 2 không