Cho tam giác ABC vuông tại A , đường cao AH , Trên tia đối của BC lấy điểm D sao cho BD = BH . Trên tia đối của CB lấy điểm E sao cho CE = CH . Gọi M và N lần lượt là trung điểm của CD VÀ BE . Hãy so sánh AB + AC với BC + MN
Cho \(\Delta ABC\)vuông tại A, đường cao AH. Trên tia đối của tia BC lấy điểm D sao cho \(BD=BH\). Trên tia đối của tia CB lấy điểm E sao cho \(CE=CH\). Gọi M và N lần lượt là trung điểm của CD và BE. Hãy so sánh \(AB+AC\)với \(BC+MN\)
Tam giác ABC vuông tại A có AC= 3cm; BC= 5cm. Trên tia đối của tia CB lấy điểm D trên tia đối của CA lấy điểm E sao cho CD= 1,5cm; CE= 2,5cm
a. tam giác CDE là tam giác gì? tính DE
b. vẽ AH vuông góc với BC tính AH; BH; CH
cho tam giác ABC cân tại A , điểm D thuộc AB , trên tia đối tia của CA lấy điểm E sao cho CE = BD , trên tia đối tia BC lấy điểm F sao cho BF =BD , gọi I là giao điểm của DE và BC chứng minh rằng tam giác FDI cân
Cho tam giác ABC , BD là đường trung tuyến . Trên tia đối của tia BD lấy điểm E sao cho DE=BD. Gọi M,N lần lượt là trung điểm cua BC và EC. Gọi P,Q lần lượt là giao điểm của AM,AN với BE. CM: BP=PQ=QE
BÀI 3. Cho tam giác ABC. Trên tia đối của tia BC lấy M sao cho BM = BA. Trên tia đối tia CB lấy N sao cho CN = CA. Qua M kẻ đường thẳng song song với AB, qua N kẻ đường thẳng song song với AC, chúng cắt nhau tại P.
a) Chứng minh MA là tia phân giác của PMB , NA là tia phân giác của PNC . b) Chứng minh PA là tia phân giác của MNP .
c) Gọi D là trung điểm AM, E là trung điểm AN, các đường thẳng BD, CE cắt nhau tại Q. Chứng minh QM = QN.
d) Chứng minh ba điểm P, A, Q thẳng hàng.
Cho tam giác ABC. Trên tia đối của tia BC lấy điểm D sao cho BD = AB. Trên tia đối của tia CB lấy điểm E sao cho CE = AC. Gọi H là chân đường vuông góc kể từ B đến AD, K là chân đường vuông góc kẻ từ C đến AE
a) Chứng minh rằng HK song song
với DE
b) Tính HK, biết chu vi tam giác ABC bằng 10 cm
Bài 2 Cho tam giác ABC, đường trung tuyến AM. Trên tia đối của tia AM lấy điểm N sao cho AN = AM. Gọi K là giao điểm của CA và NB. Chứng minh NK = 1/2 KB...
Xem thêm
Cho \(\Delta MNP\)vuông tại M, đường cao MK. Trên tia đối tia NP lấy A sao cho \(NA=NK\), trên tia đối tia PN lấy B sao cho \(PB=PK\). Gọi D và E lần lượt là trung điểm của AP và BN. Hãy so sánh \(MN+MP\)và \(NP+DE\)
Cho hình tahng ABCD, đáy nhỏ AB, AD vuông CD và AD=CD. Vẽ đường cao BH. Trên tia đối của tia DA lấy K sao cho DK=CH. Gọi E là giao điểm của hai đường thẳng AD và BC. Chứng minh rằng:
a) BC vuoog CK
b) \(\frac{1}{CD^2}=\frac{1}{CE^2}+\frac{1}{CB^2}\)