Chương III : Thống kê

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mai Hoàng Ngọc

Cho ΔABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Phân giác góc B cắt AC tại D.

a/ Chứng minh ΔABD=ΔEBD và DE⊥BC.

 b/ Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK=EC.

c/ Gọi M là trung điểm của KC. Chứng minh ba điểm B,D,M thẳng hàng.

 

Nguyễn Lê Phước Thịnh
16 tháng 2 2021 lúc 20:29

a) Xét ΔABD và ΔEBD có

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔABD=ΔEBD(c-g-c)

Suy ra: \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

hay DE\(\perp\)BC(Đpcm)

b) Ta có: ΔBAD=ΔBED(cmt)

nên AD=ED(hai cạnh tương ứng)

Xét ΔADK vuông tại A và ΔEDC vuông tại E có

DA=DE(cmt)

\(\widehat{ADK}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔADK=ΔEDC(cạnh góc vuông-góc nhọn kề)

Suy ra: AK=EC(hai cạnh tương ứng)

c) Ta có: BA+AK=BK(A nằm giữa B và K)

BE+EC=BC(E nằm giữa B và C)

mà BA=BE(cmt)

và AK=EC(cmt)

nên BK=BC

Ta có: ΔADK=ΔEDC(cmt)

nên DK=DC(hai cạnh tương ứng)

Ta có: M là trung điểm của CK(cmt)

nên MK=MC

Ta có: BK=BC(cmt)

nên B nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: DK=DC(cmt)

nên D nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(2)

Ta có: CM=KM(cmt)

nên M nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(3)

Từ (1), (2) và (3) suy ra B,D,M thẳng hàng(đpcm)

NQ Chi
16 tháng 2 2021 lúc 20:29

.


Các câu hỏi tương tự
nguyễn tuấn hưng
Xem chi tiết
Khánh Đăng
Xem chi tiết
Mừng
Xem chi tiết
Trần Hải
Xem chi tiết
Honey
Xem chi tiết
Đoán xem
Xem chi tiết
Nguyễn Ngọc Anh
Xem chi tiết
Thao Dinh
Xem chi tiết
Lộ Tư Triệu
Xem chi tiết