Bài 25: Cho tg ABC có B=C.Tia phân giác của góc A cắt BC tại D. Chứng minh rằng:
a) tg ADB = tg ADC
b) AB = AC
Bài 26: Cho góc xOy khác góc bẹt. Ot là phân giác của góc đó. Qua điểm H thuộc tia Ot,
kẻ đường vuông góc với Ot, nó cắt Ox và Oy theo thứ tự là A và B.
a) Chứng minh rằng OA = OB;
b) Lấy điểm C thuộc tia Ot, chứng minh rằng CA = CB và OAC=OBC
Bài 27. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D
sao cho OA = OB, AC = BD.
a) Chứng minh: AD = BC.
b) Gọi E là giao điểm AD và BC. Chứng minh: tg EAC = tg EBD
c) Chứng minh: OE là phân giác của góc xOy, OE vuông góc CD
Bài 28 : Cho tam giác ABC với AB = AC. Lấy I là trung điểm BC. Trên tia BC lấy
điểm N, trên tia CB lấy điểm M sao cho CN=BM.
a) Chứng minh ABI=ACI và AI là tia pg của góc BAC
b)Chứng minh AM=AN.
c) Chứng minh AI BC.
bài 25
a, ta có
\(\widehat{B}=\widehat{C}\)
\(\Leftrightarrow\Delta ABC\) cân tại A
\(\Rightarrow AB=AC\)
có tia AD là tia phân giác của góc A nên \(\widehat{DAB}=\widehat{DAC}\)
xét \(\Delta ADB\) và \(\Delta ADC\)
có \(\left\{{}\begin{matrix}\widehat{B}=\widehat{C}\left(cmt\right)\\AB=AC\left(cmt\right)\\\widehat{DAB}=\widehat{DAC}\left(cmt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta ADB=\Delta ADC\left(g.c.g\right)\) (đpcm)
b, từ phần a ta có AB = AC ( đpcm )
Bài 28 : Cho tam giác ABC với AB = AC. Lấy I là trung điểm BC. Trên tia BC lấy
điểm N, trên tia CB lấy điểm M sao cho CN=BM.
a) Chứng minh ABI=ACI và AI là tia pg của góc BAC
b)Chứng minh AM=AN.
c) Chứng minh AI vuông góc BC