Cho ΔABC. Trên tia đối của tia BC lấy D, trên tia đối của tia CB lấy E sao cho BD=BC=CE. Qua D kẽ đường thẳng song song với AB và cắt AC ở H. Que E kẻ đường thẳng song song với AC và cắt AB ở K, chúng cắt nhau ở I'
a/ Tứ giác BHCK là hình gì? Vì sao?
b/ Tia IA cắt BC ở M. Chứng minh MB=MC
c/ Tìm điều kiện của ΔABC để tứ giác DHKE là h.t.cân
a) Tứ giác BHKC có : 2 đường chéo BK và CH cắt nhau tại A tại trung điểm mỗi đường
=> BHKC là hình bình hành
b) Tứ giác AHIK là hình bình hành nên AK//IH và AK =IH
=> AB // IH và AB =IH
Tứ giác ABIH là hình bình hành vậy IA // HB
=> AM là đường trung bình của tam giác BHC
=> MB = MC
c) chịu
giải
a) Tứ giác BHKC có : 2 đường chéo BK và CH cắt nhau tại A tại trung điểm mỗi đường
=> BHKC là hình bình hành
b) Tứ giác AHIK là hình bình hành nên AK//IH và AK =IH
=> AB // IH và AB =IH
Tứ giác ABIH là hình bình hành vậy IA // HB
=> AM là đường trung bình của tam giác BHC
=> MB = MC
c) chịu ko biết làm