\(\text{#TNam}\)
`a,` Xét Tam giác `ABM` và Tam giác `ACM` có:
`AB=AC (g``t)`
`MB=MC (g``t)`
`AM` chung
`=>` Tam giác `ABM =` Tam giác `ACM (c-c-c)`
`b,` Vì Tam giác `ABM = `Tam giác `ACM (a)`
`->` \(\widehat{AMB}=\widehat{AMC}\) `(2` góc tương ứng `)`
Mà `2` góc này nằm ở vị trí kề bù `->` \(\widehat{AMB}+\widehat{AMC}=180^0\)
`->`\(\widehat{AMB}=\widehat{AMC}=\) `180/2=90^0`
`-> AM \bot BC`
`c,` Vì Tam giác `ABM =` Tam giác `ACM (a)`
`->`\(\widehat{BAM}=\widehat{CAM}\) `(2` góc tương ứng `)`
Xét Tam giác `HAM` và Tam giác `KAM` có:
`AM` chung
\(\widehat{HAM}=\widehat{KAM}\) `(CMT)`
`=>` Tam giác `HAM =` Tam giác `KAM (ch-gn)`
`=> MH=MK (2` cạnh tương ứng `)`
`d,` Vì Tam giác `HAM =` Tam giác `KAM (c)`
`-> HA=HK`
Xét Tam giác `HAK: HA=HK ->` Tam giác `HAK` cân tại `A`
`->` \(\widehat{AHK}=\widehat{AKH}=\) \(\dfrac{180^0-\widehat{A}}{2}\)
Xét Tam giác `ABC: AB = AC ->` Tam giác `ABC` cân tại `A`
`->`\(\widehat{B}=\widehat{C}=\) \(\dfrac{180^0-\widehat{A}}{2}\)
`->`\(\widehat{AHK}=\widehat{B}\)
Mà `2` góc này nằm ở vị trí đồng vị `-> HK`//`BC (đpcm)`