Cho tam giác ABC cân tại A. Qua B kẻ đường thẳng vuông góc với AB, qua C kẻ đường vuông góc với AC, chúng cắt nhau tại D.
a, Chứng minh rằng AD là tia phân giác của góc A.
b, Đường thẳng qua B và vuông góc với BC cắt đường thẳng CA tại E.
CMR: Tam giác ABE cân và BA là đường trung tuyến của tam giác EBC
c, Gọi I là giao điểm của AD và BC.
CMR: AI song song với BE và AI=\(\frac{1}{2}\)BE.
d, Giả sử BA=\(\sqrt{3}cm\), BC=\(\sqrt{8}\)cm. Chứng minh AB vuông góc với EI.
Cho tam giác ABC cân tạo A ( góc BAC>90 độ). Đường thẳng qua B và vuông góc với AB cắt đường thẳng qua C và vuông góc với AC tại D
a) Chứng minh rằng AD là đường phân giác của tam giác ABC
b) Đường thẳng qua B và vuông góc với BC cắt đường thẳng CA tại E. Chứng minh rằng tam giác ABE cân và BA là đường trung tuyến của tam giác EBC
Cho Δ ABC vuông tại B, BC = 15 cm, BA = 8 cm. Trên cạnh BC lấy E sao cho BE = BA
a) Tính AC
b) Δ ABE là tam giác gì? Vì sao
c) Từ B kẻ đường thẳng vuông với AE tại H và cắt AC tại D. Chứng minh BD là tia phân giác của góc ABC
d) Gọi I là giao điểm của đường thẳng AD và DE. Chứng minh A song song IC
Cho Δ ABC cân có góc A = 120°. Vẽ tia phân giác AI ( I ∈ BC ). Từ I vẽ IH vuông góc AB tại H, IK vuông góc AC tại K, trên đoạn HB lấy N sao cho HM = KN
a) Chứng minh Δ IMN cân
b) Chứng minh HK song song MN
c) Từ C vẽ đường thẳng d ⊥ BC cắt tia BA tại E. Biết CE = 8 cm. Tính CK và HK
THANKS MN
Cho tam gác abc có góc a=75 độ, góc c=35 độ, m là trung điểm của bc. đường thẳng đi qua m và vuông góc với phân giác của góc a cắt ab, ac lần lượt tại e và f
a/ chứng minh rằng: be=cf
b/ đường thẳng qua e song song với bc và đường thẳng qua c song song với ba cắt nhau tại j. chứng minh cfj là tam giác cân. từ đó, so sánh bc và ef
c/ tia phân giác ngoài của góc a của tam giác abc cắt đường thẳng bc tại i. Gọi n là điểm thuộc bi sao cho bn=ab. chứng minh: ni=ac
Cho tam giác ABC có ba góc nhọn. Vẽ về phía ngoài tam giác ABC các tam giác vuông cân ABD và ACE. Đường thẳng kẻ qua E song song với AD và đường thẳng kẻ qua D song saong với AE cắt nhau tại I.
a) CMR: AI = BC
b) Đường thẳng AI cắt BC tại H. CM : AH vuông góc với BC
Cho tam giác ABC có ba góc nhọn. Vẽ về phía ngoài tam giác ABC các tam giác vuông cân ABD và ACE. Đường thẳng kẻ qua E song song với AD và đường thẳng kẻ qua D song saong với AE cắt nhau tại I.
a) CMR: AI = BC
b) Đường thẳng AI cắt BC tại H. CM : AH vuông góc với BC
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm E. Trên tia đối của tia CA lấy điểm F sao cho BE = CF. Nối È cắt BC tại O. Kẻ EI song song với AF ( I thuộc BC ). a, CMR: tam giác BEI là tam giác cân b, CMR: OE = OF c, Đường thẳng qua B và vuông góc với BA cắt đường thẳng qua C và vuông góc với AC tại K. Chứng tỏ tam giác EKF là tam giác cân và OK vuông góc với EF
cho tam giác ABC có góc BAC=60 độ , AB<AC.Tia p/g của góc BAC cắt BC tại D.Từ B, kẻ đường thẳng vuông góc với AD đường thẳng này cắt AD tại H và cắt AC tại E
a, CM tam giác AHB = tam gíac AHE
b, Qua H kẻ đường thẳng song song với AB và cắt AC tại k. CM góc BKA = 90 độ
c, CM ; DB<DC
Cho tam giác ABC vuông tại A. a) Nếu AB = 9cm; BC = 15 cm. Tính AC. b) Trên tia đối của tia CA lấy điểm D sao cho CA = CD, qua D kẻ đường thẳng d vuông góc với AD. Gọi E là giao điểm của BC và d. Qua C kẻ đường thẳng vuông góc với BE cắt đường thẳng d tại F. Chứng minh rằng: ∆𝐴𝐵𝐶 = ∆𝐷𝐸𝐶 và tam giác BEF là tam giác cân c) So sánh BF và AD. d) Tìm điều kiện của tam giác ABC để tam giác EFB là tam giác đều