1)cho f(x)=ax^3+bx^2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1).f(-2) là bình phương của một số nguyên.
2)cho đa thức f(x)=ax^2+bx+c với a,b,c là hằng số.Hãy xác định a,b,c biết f(1)=4,f(-1)=8 và a-c=4
3)cho f(x)=ax^3+4x(x^2-1)+8;g(x)=x^3-4x(bx-1)+c-3.Xác định a,b,c để f(x)=g(x).
4)cho f(x)=cx^2+bx+a và g(x)=ax^2+bx+c.
cmr nếu Xo là nghiệm của f(x) thì 1/Xo là nghiệm của g(x)
5)cho đa thức f(x) thỏa mãn xf(x+2)=(x^2-9)f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
6)tính f(2) biết f(x)+(x+1)f(-x)=x+2
P(x)=ax^3+bx^2+cx+d biết a,b,c,d là các hằng số thỏa mãn a+b+c+d=0 chứng minh 1 là nghiệm của đa thức P(x)
a)xác định a để nghiệm của đa thức f x = ax - 4 Cũng là nghiệm của đa thức g(x) = x^2 trừ x = 2 .
b)cho f(x) = ax^3 = bx^2 = cx = d trong đó A,B,C,D là hàm số và thỏa mãn b + 3 a + c. chứng tỏ rằng F(1) = F (-2)
1,Tìm các hệ số AB của đa thức f(x) = ax + b, biết : f(1)=1; f(2)=4
2, cho đa thứcf(x) : ax mũ 2 + bx + c = 0 ( vs mọi giá trị x ) . CMR : a=b=c=0
3, Cho đa thức f(x) thỏa mãn, f(x) + x. f(-x) = x+1 vs mọi giá trị của x. Tính f(1)
a)xác định a để nghiệm của đa thức f x = ax - 4 Cũng là nghiệm của đa thức g(x) = x^2 trừ x = 2 .
b)cho f(x) = ax^3 = bx^2 = cx = d trong đó A,B,C,D là hàm số và thỏa mãn b + 3 a + c. chứng tỏ rằng F(1) = F (-2)
\(P(x)=ax^3+bx^2+cx+d\) biết a,b,c,d là các hằng số thỏa mãn a+b+c+d=0 chứng minh 1 là nghiệm của đa thức P(x)
\(F(x)=ax^3+bx^2+cx+d\) biết a,b,c,d là các hằng số thỏa mãn a+b+c+d=0 chứng minh 1 là nghiệm của đa thức F(x)
a) Cho đa thức P(x) thỏa mãn : x . P(x + 2 ) = ( x2 - 9 )P(x)
Chứng minh rằng đa thức P(x) có ít nhất 3 nghiệm .
b) Cho đa thức P(x) = ax3 + bx2 + cx + d với P(0) và P(1) là số lẻ . Chứng minh rằng P(x) ko thể có nghiệm là số nguyên .
cho đa thức f(x)=ax^3+bx^2+cx+d. Cm rằng f(x) = 0 với mọi x thì a = b = c = d = 0