Cho đa thức P(x) = ax^2+bx+c . Biết 9a-b+3c = 0 . Chứng minh rằng trong 3 số P(-1) , P(-2) , P(2) có ít nhất một số không âm , một số không dương
Cho đa thức \(f\left(x\right)=ax^2+bx+c\) với a, b, c là các số hữu tỉ không âm, biết rằng a + 3c = 2019 và a + 2b = 2020. Chứng minh \(f\left(1\right)\le2019\frac{1}{2}\)
giúp mình với, ai nhanh vào đúng tick cho
Cho đa thức : 2 P x a x bx c ( ) . = + + Cho biết 9a - b = -3c, Chứng minh rằng: Trong ba số P(- 1) ; P(2) ; P(-2) có ít nhất 1 số không âm, ít nhất 1 số không dươn
Cho đa thức P(x) = ax^2+bx+c . Biết 9a-b+3c = 0 . Chứng minh rằng trong 3 số P(-1) , P(-2) , P(2) có ít nhất một số không âm
mk cần gấp
Cho đa thức \(f\left(x\right)=ax^2+bx+c\) với a,b,c là các số hữu tỉ không âm. Biết a+3c=2019 và a+2b=2020. Chứng minh rằng \(f\left(1\right)\le2019\frac{1}{2}\)
bài 1
a) cho B = \(\frac{1}{2}+\frac{3}{2^2}+\frac{7}{2^3}+...+\frac{2^{100}-1}{2^{100}}\). Chứng minh B >99
b)chứng minh \(\left(n+1\right)\left(n+2\right)\left(n+3\right)...\left(2n\right)⋮2^n\)với n nguyên dương
c) cho đa thức f(x) = ax^3 + bx^3 + cx + d . với f(0) và f(1) là các số lẻ. CMR f(x) không có nghiệm là số nguyên.
Cho: P(x) = \(ax^2+bx+c\). Biết \(9a-b=-3c\).
Chứng minh trong 3 số P(-1) , P(-2) , P(2 ) có ít nhất 1 số không âm, 1 số không dương.
Biết rằng \(\left(x^2-4\right)P\left(x+1\right)=\left(x^2-3\right)P\left(x\right)\))
Chứng minh đa thức P (x) có ít nhất 4 nghiệm.
Biết \(\left(x^2-2\right)\times P\left(x+1\right)=\left(x^2-3\right)\times P\left(x\right)\).
Chứng minh rằng đa thức P(x) có ít nhất 4 nghiệm.