Cách làm khác 1 chút .
\(F\left(x\right)=G\left(x\right).H\left(x\right)=\left(x-1\right)\left(x+2\right).H\left(x\right).\)
+Với \(x=1\Rightarrow F\left(x\right)=0\Leftrightarrow1+a+b=0\Rightarrow a+b=-1.\)(1)
+ Với x = -2 \(\Rightarrow F\left(x\right)=0\Leftrightarrow-8-2a+b=0\Rightarrow2a-b=-8.\)(2)
(1)(2) => a =-3 ; b =2
Vậy + P= ( -3 +2 ) 2 +10 = 11 là số nguyên tố
Ta có
\(x^3+ax+b=\left(x-1\right)\left(x^2+x-2\right)+\left(a+3\right)x+b-2\)
Để đây là phép chia hết thì phần dư phải bằng 0 hay
\(\hept{\begin{cases}a+3=0\\b-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=-3\\b=2\end{cases}}}\)
\(\Rightarrow P=\left(a+b\right)^2+10=\left(-3+2\right)^2+10=11\)
Vậy P là số nguyên tố