cho đa thức f(x) thoả mãn (x mũ 2 -9 )f(x)=x.f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
a)CMR đa thức x2+x+1 vô nghiệm
b)Cho đa thức f(x) thoả mãn
x.f(x+1)=(x+2).f(x)
CMR đa thức f(x) ít nhất 2 nghiệm 0 và -1
Cho đa thức f(x) thoả mãn điều kiện : x.f(x-2)=(x-4).f(x) . Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm
Giup mình với nhé
cho đa thức f(x) thỏa mãn điều kiện :
x.f(x-2)=(x-4).f(x)
cmr đa thức f(x) có ít nhất 2 nghiệm
cho đa thức f(x) thỏa mãn: x.f(x+1)=(x+2).f(x)
CMR: đa thức f(x) có ít nhất 2 nghiệm phân biệt
Cho đa thức f(x) xác định với mọi x thỏa mãn :
x.f(x+2)=(x^2-9).f(x)
a)Tính f(5)
b)CMR f(x) có ít nhất 3 nghiệm
a> CMR : Đa thức x * f(x+1) = (x + 2) * f(x) có ít nhất 2 nghiệm
b> CMR : Đa thức (x^2 - 4) * f(x) = (x - 1) * f(x+1) có ít nhất 3 nghiệm
c> Cho đa thức f(x) thỏa mãn f(x+2)=(x^2 - 9) * f(x) với mọi x. CMR : Đa thức x * f(x) = 0 có ít nhất 3 nghiệm
a> CMR : Đa thức x * f(x+1) = (x + 2) * f(x) có ít nhất 2 nghiệm
b> CMR : Đa thức (x^2 - 4) * f(x) = (x - 1) * f(x+1) có ít nhất 3 nghiệm
c> Cho đa thức f(x) thỏa mãn f(x+2)=(x^2 - 9) * f(x) với mọi x. CMR : Đa thức x * f(x) = 0 có ít nhất 3 nghiệm
a> CMR : Đa thức x * f(x+1) = (x + 2) * f(x) có ít nhất 2 nghiệm
b> CMR : Đa thức (x^2 - 4) * f(x) = (x - 1) * f(x+1) có ít nhất 3 nghiệm
c> Cho đa thức f(x) thỏa mãn f(x+2)=(x^2 - 9) * f(x) với mọi x. CMR : Đa thức x * f(x) = 0 có ít nhất 3 nghiệm