cho đa thức f(x)=ax2+bx+c(a,b,c là cá hằng số) biết 3a+b=0. CM nếu các số m,n thỏa mãn m+n=3 thì f(m)=f(n)
cho f(x) =ã2 +bx + cx ( a;b;c là các hằng số) . Cho biết 3a +b =0
Chứng minh các số m,n thỏa mãn m+n =3 thì f(x) = f(n)
Cho f(x)= ax^2+bx+c (a,b,c là hằng số khác 0) . Cho biết 3a+b=0. Chứng minh rằng nếu các số m,n thỏa mãn m+n=3 thi f(m)=f(n)
Cho đa thức f(x) = ax^2 + bx + c ( a, b, c là hằng số ). Chứng minh rằng
a) Nếu a + b + c = 0 thì f(x) có một nghiệm x=1
b) Nếu a - b + c = 0 thì f(x) có một nghiệm x= -1
c) Nếu f(1) = f(-1) thì f(x) = f(-x) với mọi x
cho đa thức f(x)=ax^2 +bx +c(a,b,c là các hằng số). Chứng minh rằng:f(3). f(-2)>=0 nếu a,b thỏa mãn a +b=0
Cho các đa thức: f(x)= ax^2+bx+c(a,b,c là các hằng số) và g(x)= (2009x+2010)^2. Tính a-b+c nếu biết f(x)= g(x)
cho đa thức f(x) = ax^2 + bx +c (a,b,c là hằng số)
chứng minh rằng: nếu 25 - 7b +2c =0 thì f(3).f(4) <(hoặc bằng) 0
Tam thức bậc 2 là đa thức có dạng f(x)=ax2+bx+c với a,b,c là hằng số (a khác 0). Hãy xác định các hệ số a,b,c, biết f(1)=4; f(-1)=8 và a-c= -4
Cho các đa thức: f(x)=ax^2+bx+c(a,b,c là các hằng số) và g(x)= (2009x+2010)^2. Tính a-b+c nếu biết f(x)=g(x) với mọi giá trị của biến x