Cho tam giác MNP vuông ở M, đường cao MH, phân giác góc MNP cắt MP tại D. Cho biết MN = 6cm, MP = 8cm. a) Tính NP. Chứng minh Δ H M N và Δ H P M đồng dạng. b) Trên NP lấy điểm E sao cho PE = 4cm. Chứng minh N E 2 = N H . N P c) Tính diện tích Δ P E D
hình vuông MNPQ, K ∈ PQ. MK giao NP tại A. B thuộc tia đối tia QP, QB= AN.
a) c.m ΔQMK ~ Δ NAM., QM.MN=QK.NA
b) c.m ΔMQB ~ Δ KQM và ΔAMB vuông cân
c. Phân giác góc AMB cắt AB tại I. MI giao PB tại H. MQ giao AB tại J. C/m I,Q,N thẳng hàng và AM.IN=MN.IA + MI.AN
d) IQ giao HJ tại O, BO giao MJ tại S. C/m : SQ/SJ = MQ/MJ
Cho Δ ABC có 3 đường cao AK,BM,CN cắt nhau tại H.
a) C/m: Δ ANH ~ Δ CKH, suy ra HA.HK = HN.HC
b) Δ HNK ~ Δ HAC và CN là phân giác của góc MNK
c) C/m: \(\dfrac{HK}{AK}+\dfrac{HM}{BM}+\dfrac{HN}{CN}=1\)
Bài 1: Cho tứ giác ABCD có độ dài các cạnh là a, b, c, d và có diện tích là S. Chứng mình ABCD là hình vuông khi
a + b + c + d = 4\(\sqrt{S}\)
Bài 2: Cho hình thang ABCD (AB song song CD). Một đường thẳng song song với 2 đáy cắt AD và BC thứ tự ở M và N. Cho biết AB = a, CD = b, \(\frac{MA}{MD}=\frac{m}{n}\), a, b, c, d > 0. Tính M, N theo a, b, m, n.
Cho tam giác ABC vuông tại A (AB < AC). Kẻ AH vuông góc vói BC tại H. Gọi E và F lần lượt là hình chiếu của H trên AB và AC.
a) Chứng minh AH2 - AE.AB.
b) Chứng minh Δ A F E ~ Δ A B C ;
c) Lấy M đối xứng với A qua E, tia MH cắt cạnh AC tại N. Chứng minh A B H ^ = A N H ^ và EF//HN.
d) Gọi O là trung điểm của BC; AO giao với HN tại K. Cho biết A C B ^ = 30 ° , hãy tính tỉ số A K A N S H C A
B1 Tính
\(\frac{x^3+125}{3x-9}.\frac{3-x}{x^2-5x+25}\)
B2 : Cho abc = 1. Tính M-N
\(M=\left(a+\frac{1}{a}\right)^2\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)2\)
\(N=\left(a+\frac{1}{a}\right)\left(b+\frac{1}{b}\right)\left(c+\frac{1}{c}\right)\)
Bài 1.
a, Cho\(\dfrac{a}{3}\)=\(\dfrac{b}{4}\)=\(\dfrac{c}{5}\) và a+b+c=24. Tính M = a.b + b.c + ca
b, Cho\(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)= \(\dfrac{c}{4}\)=\(\dfrac{d}{5}\) và a+b+c+d = -42. Tính N = a.b +c.d
Bài 2.
a, Biết\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{4}\) và x+y+z= 24. Tính A = 3x + 2y - 6z
b, Biết\(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\) và x-y+z = 6\(\sqrt{2}\). Tính B = xy - yz
Cho đoạn thẳng AB. O là trung điểm. Trên cùng một nửa mặt phẳng bờ là AB kẻ Ax, By cùng vuông góc với AB. Trên Ac lấy điểm C khác A. Từ O kẻ đường thẳng vuông góc với OC cắt By tại D. Từ O hạ O M ⊥ C D OM⊥CD a) Chứng minh O A 2 = A C . B D OA2=AC.BD b) Chứng minh Δ A M B ΔAMB vuông c) Gọi N là giao điểm của BC và AD. Chứng minh MN//AC
cho Δ abc vuông tại A(AC<AB) M là trug đ của AB, P là đ nằm trong Δ ABC sao cho MP vông góc vs AB .Trên tia đối cua tia MP lấy đ Q sao cho MP=MQ
a) c/m tứ giasc APBQ là hình thoi
b)qua C vẽ đường thẳng //vs BP cắt tia QP tại E .C/M tuứ giác ACEQ là hình bình hành
c)gọi N là giao đ của PE và BC +C/M AC=2MN
+Cho MN =3cm ,AN=5cm.Tính chu vi của ΔABC
Cho tam giác ABC có AB=5cm;AC=8cmAB=5cm;AC=8cm. Lấy điểm D trên cạnh AC sao cho ΔADB∼ΔABC.ΔADB∼ΔABC. Tìm DC.