Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bảo Châu

Cho cos x + sin x = 3/4. Tính giá trị biểu thức A= |sin x - cos x|

Lê Song Phương
13 tháng 8 2023 lúc 15:57

Ta có \(2\sin x\cos x=\left(\sin x+\cos x\right)^2-\left(\sin^2x+\cos^2x\right)\) 

\(=\left(\dfrac{3}{4}\right)^2-1=-\dfrac{7}{16}\)  

Từ đó \(A=\left|\sin x-\cos x\right|\)

\(\Rightarrow A^2=\left(\sin x-\cos x\right)^2\)

\(A^2=\sin^2x+\cos^2x-2\sin x\cos x\)

\(A^2=1+\dfrac{7}{16}=\dfrac{23}{16}\)

\(\Rightarrow A=\dfrac{\sqrt{23}}{4}\) (do \(A\ge0\))

 

 

 

 

 

Xyz OLM
13 tháng 8 2023 lúc 16:15

Có \(\cos x+\sin x=\dfrac{3}{4}\)

\(\Leftrightarrow\left(\cos x+\sin x\right)^2=\dfrac{9}{16}\)

\(\Leftrightarrow2.\sin x.\cos x+1=\dfrac{9}{16}\)

\(\Leftrightarrow\sin x.\cos x=-\dfrac{7}{32}\)

Lại có \(\left(\cos x+\sin x\right)^2=\left(\cos x-\sin x\right)^2+4.\sin x.\cos x=\dfrac{9}{16}\)

\(\Leftrightarrow\left(\cos x-\sin x\right)^2=\dfrac{23}{16}\)

\(\Leftrightarrow\left|\sin x-\cos x\right|=\dfrac{\sqrt{23}}{4}\)


Các câu hỏi tương tự
Trang Thu
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Dương Nguyễn
Xem chi tiết
22. Minh Ngọc
Xem chi tiết
ThinhN.
Xem chi tiết
Pham Trong Bach
Xem chi tiết