a: (SC;(SAB))=(SC;SB)=góc BSC
\(AC=\sqrt{a^2+a^2}=a\sqrt{2}\)
\(SC=\sqrt{SA^2+AC^2}=a\sqrt{5}\)
\(SB=\sqrt{a^2+\left(a\sqrt{3}\right)^2}=2a\)
\(cosBSC=\dfrac{SB^2+SC^2-BC^2}{2\cdot SB\cdot SC}=\dfrac{4a^2+5a^2-a^2}{2\cdot2a\cdot a\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\)
=>góc BSC=27 độ
b: (SO;(SAB))=(SO;SK)(OK vuông góc AB tại K)
Xét ΔABC có OK//BC
nên OK/BC=AK/AB=AO/AC=1/2
=>OK=a/2; AK=1/2a
\(SK=\sqrt{SA^2+AK^2}=\sqrt{3a^2+\dfrac{1}{4}a^2}=\dfrac{a\sqrt{13}}{2}\)
\(SO=\sqrt{SA^2+AO^2}=\sqrt{3a^2+\dfrac{1}{2}a^2}=\dfrac{a\sqrt{14}}{2}\)
OK=a/2
\(cosOSK=\dfrac{SO^2+SK^2-OK^2}{2\cdot SO\cdot SK}=\dfrac{\dfrac{14}{4}a^2+\dfrac{13}{4}a^2-\dfrac{1}{4}a^2}{2\cdot\dfrac{a\sqrt{14}}{2}\cdot\dfrac{a\sqrt{13}}{2}}=\dfrac{\sqrt{182}}{14}\)
=>góc OSK=16 độ
c: (SA;SBD)=(SA;SO)(AO vuông góc BD) tại O
=góc ASO
\(SO=\sqrt{SA^2+AO^2}=\sqrt{3a^2+\dfrac{1}{2}a^2}=\dfrac{a\sqrt{14}}{2}\)
SA=a căn 3
AO=a*căn 2/2
\(cosASO=\dfrac{SA^2+SO^2-AO^2}{2\cdot SA\cdot SO}=\dfrac{\sqrt{42}}{7}\)
=>góc ASO=22 độ