Phương pháp:
S n = n u 1 + n ( n - 1 ) d 2
Cách giải:
Ta có:
⇒ S 20 = n u 1 + n ( n - 1 ) 2 d = - 320
Chọn C
Phương pháp:
S n = n u 1 + n ( n - 1 ) d 2
Cách giải:
Ta có:
⇒ S 20 = n u 1 + n ( n - 1 ) 2 d = - 320
Chọn C
Một cấp số cộng có tổng của n số hạng đầu S n tính theo công thức S n = 5 n 2 + 3 n , ( n ∈ ℕ * ) . Tìm số hạng đầu u 1 và công sai d của cấp số cộng đó
A. u 1 = - 8 ; d = 10 .
B. u 1 = - 8 ; d = - 10 .
C. u 1 = 8 ; d = 10 .
D. u 1 = 8 ; d = - 10 .
Cho cấp số cộng u n có tổng của n số hạng đầu tiên được tính bởi công thức S n = 4 n – n ^ 2. Gọi M là tổng của số hạng đầu tiên và công sai của cấp số cộng. Khi đó:
A. M = -1
B. M = 1
C. M = 4
D. M = 7
Cho cấp số cộng có tổng của n số hạng đầu tiên được tính bởi công thức Sn = 4n – n2. Gọi M là tổng của số hạng đầu tiên và công sai của cấp số cộng đó. Khi đó :
A. M = 7
B. M = 4
C. M = 2
D. M = 1
Cho cấp số cộng (un) có số hạng đầu là u1 = 1 và công sai d = 1. Tìm n sao cho tổng của n số hạng đầu tiên của cấp số cộng đó bằng 3003.
A. n = 79
B. n = 78
C. n = 77
D. n = 80
Cho cấp số cộng có tổng n số hạng đầu là S n = 3 n 2 + 4 n , n ∈ ℕ * . Giá trị của số hạng thứ 10 của cấp số cộng là
A. u 10 = 67 .
B. u 10 = 61 .
C. u 10 = 59 .
D. u 10 = 55 .
Cho cấp số cộng ( u n ) và gọi S n là tổng n số hạng đầu tiên của nó. Biết S 7 = 77 v à S 12 = 192 . Tìm số hạng tổng quát u n của cấp số cộng đó
A. u n = 5 + 4 n .
B. u n = 3 + 2 n .
C. u n = 2 + 3 n .
D. u n = 4 + 5 n .
Tổng n số hạng đầu tiên của một cấp số cộng là S_n = \frac{3n^2 + 13n}{2}Sn=23n2+13n với n \in \mathbb{N}^*n∈N∗. Số hạng tổng quát của cấp số cộng là
Phát biểu định nghĩa cấp số cộng và công thức tính tổng n số hạng đầu tiên của một số không đổi d.