Ta có: 2x + 3y = 13
=> \(13^2=\left(2x+3y\right)^2\le\left(2^2+3^2\right)\left(x^2+y^2\right)\)( theo bunhia)
<=> \(13^2\le13\left(x^2+y^2\right)\)
<=> \(Q=x^2+y^2\ge13\)
Dấu "=" xảy ra <=> \(\frac{x}{2}=\frac{y}{3}=\frac{2x}{4}=\frac{3y}{9}=\frac{2x+3y}{4+9}=\frac{13}{13}=1\)
=> x = 2 và y = 3
Vậy GTNN của Q = 1 tại x = 2 và y = 3.