Chứng minh rằng nếu m^2+m.n+n^2 chia hết cho 9 với m,n là các số tự nhiên thì m,n chia hết cho 3
Cho các số tự nhiên m và n với (m;n)=1 . Tìm(\(m^2+n^2;m+n\))
Cho M=\(24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\) ) và N=532
CMR: M và N là 2 số tự nhiên liên tiếp
\(2^m+2015=\left|n-2016\right|+n-2016\)
Tìm tất cả các số tự nhiên m;n thỏa mãn
Ta thừa nhận tính chất sau đây: Với a khác 0, a khác + hoặc - 1, nếu am = an thì m = n. Dựa vào tính chất này, hãy tìm các số tự nhiên m và n, biết:
a)\(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)
b) \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)
cho 2 số tự nhiên m,n thỏa mãn đẳng thức 24.m^4 +1 = n^2. CMR tích số (m.n) chia hết cho 5
Cách so sánh 2 lũy thừa am và bn (\(a,b,m,n\in N;ƯCLN\left(m,n\right)>1\)) :
Ta có :\(a^m=\left(a^{\frac{m}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)};b^n=\left(b^{\frac{n}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)}\)
Vì\(a^{\frac{m}{ƯCLN\left(m,n\right)}}\)(< ; > ; =)\(b^{\frac{n}{ƯCLN\left(m,n\right)}}\)nên am (< ; > ; =) bn
Ví dụ : So sánh 2300 và 3200
Ta có :\(2^{300}=\left(2^3\right)^{100}=8^{100};3^{200}=\left(3^2\right)^{100}=9^{100}\).Vì 8100 < 9100 nên 2300 < 3200
Chú ý : - Cách trên chỉ đúng với a,b tự nhiên vì trong 2 lũy thừa cùng cơ số,lũy thừa có số mũ lớn hơn chưa chắc lớn hơn và ngược lại
Ví dụ : (-3)2 > (-3)3 nhưng 2 < 3 ;\(\left(\frac{1}{3}\right)^2>\left(\frac{1}{3}\right)^3\)nhưng 2 < 3
- Lũy thừa với số mũ nguyên âm hiếm dùng tới nên ko đề cập ở đây.
Tìm x biết:\(\left(x+2\right)^{n+1}\)=\(\left(x+2\right)^{n+11}\) với n là số tự nhiên
m/5-2/n=2/15(m,n khác 0). Tìm các số tự nhiên m và n?