Giải chi tiết hộ minh:
1.Cho các số thực dương x,y thả mãn \(1+x+y=\sqrt{x}+\sqrt{xy}+\sqrt{y}\).Tính giá trị của biểu thức \(S=x^{2013}+y^{2013}\)
2.Cho 3 số x,y,z thoả mãn \(\hept{\begin{cases}x,y,z\in\left[-1;3\right]\\x+y+z=3\end{cases}}\).Chứng minh rằng :\(x^2+y^2+z^2\le11\)
Cho các số thực x, y, z thỏa mãn các điều kiện: \(\hept{\begin{cases}x+y+z=0\\x^2+y^2+z^2=6\\xyz=-1\end{cases}}\)
Tính giá trị biểu thức \(P=\frac{1}{xy\left(1-z\right)-z}+\frac{1}{yz\left(1-x\right)-x}+\frac{1}{zx\left(1-y\right)-y}\)
Cho các số dương x,y,z thỏa mãn:
\(\hept{\begin{cases}\sqrt{x}+\sqrt{y}+\sqrt{z}=2\\x+y+z=2\end{cases}}\)
Tính giá trị của biểu thức P=\(\sqrt{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\left(\frac{\sqrt{x}}{x+1}+\frac{\sqrt{y}}{y+1}+\frac{\sqrt{z}}{z+1}\right)\)
Cho x,y,x là 3 số thực khác 0 thỏa mãn \(\hept{\begin{cases}x\left(\frac{1}{y}+\frac{1}{z}\right)+y\left(\frac{1}{x}+\frac{1}{z}\right)+z\left(\frac{1}{y}+\frac{1}{x}\right)=-2\\x^3+y^3+z^3=1\end{cases}}\)
Tính \(P=\frac{1}{x^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}\)
Cho các số dương x,y,z thỏa mãn: \(\left(\sqrt{x}-\sqrt{y}\right)^3+\left(\sqrt{y}-\sqrt{z}\right)^3+\left(\sqrt{z}-\sqrt{x}\right)^3=0\)
tính giá trị biểu thức: T=\(\left(\sqrt{x}-\sqrt{y}\right)^{2013}+\left(\sqrt{y}-\sqrt{z}\right)^{2013}+\left(\sqrt{z}-\sqrt{y}\right)^{2013}\)
cho \(\hept{\begin{cases}x+y=\sqrt{4z-1}\\y+z=\sqrt{4x-1}\\z+x=\sqrt{4y-1}\end{cases}}\) TÍNH \(\left(4x-3\right)^{2012}+\left(4y-3\right)^{2013}+\left(4z-1\right)^{2014}\)
1.Giải hệ pt
1)\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\\xy+yz+zx=3\\\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}=x\end{cases}}\)
2)\(\hept{\begin{cases}xy+yz+zx=3\\\left(x+y\right)\left(y+z\right)=\sqrt{3}z\left(1+y^2\right)\\\left(y+z\right)\left(z+x\right)=\sqrt{3}x\left(1+z^2\right)\end{cases}}\)
3)\(\hept{\begin{cases}xy+yz+zx=3\\1+x^2\left(y+z\right)+xyz=4y\\1+y^2\left(z+x\right)+xyz=4z\end{cases}}\)
Cho 3 số thực x;y;z thoả :
\(\hept{\begin{cases}3\left(x+y\right)+2\left(z+1\right)=0\\3xy+1=0\end{cases}}\)
Rút gọn biểu thức sau :
\(A=\frac{x^3-y^3+\left(z+1\right)\left(x^2-y^2\right)-x+y}{\left(x-y\right)^3}\)
Làm giúp mình nha....Cảm ơn m bạn nhìu ^^
Cho x, y, z khác 0 thỏa mãn: \(\hept{\begin{cases}x+y+z=\frac{1}{2}\\\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{xyz}=4\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\end{cases}}\)
Tính:\(P=\left(y^{2009}+z^{2009}\right)\left(z^{2011}+x^{2011}\right)\left(x^{2013}+y^{2013}\right)\)
Giúp hộ tớ ạ!!!