Cho x,y,z thỏa mãn \(x^2+y^2+z^2=8\) và xy+yz+zx=4. Tìm GTLN của z
cho x, y, z lớn hơn hoặc bằng 0 thỏa mãn điều kiện x+y+z = a
a, tìm GTLN của A= xy+yz+xz
b, tìm GTNN của B= x^2+y^2+z^2
cho x, y, z lớn hơn hoặc bằng 0 thỏa mãn điều kiện x+y+z = a
a, tìm GTLN của A= xy+yz+xz
b, tìm GTNN của B= x^2+y^2+z^2
ai nhanh mik tick
cho x, y, z lớn hơn hoặc bằng 0 thỏa mãn điều kiện x+y+z = a
a, tìm GTLN của A= xy+yz+xz
b, tìm GTNN của B= x^2+y^2+z^2
ai nhanh mik tick
cho x,y,z là các số thực thỏa mãn x+y+z =1 .Tìm GTNN của biểu thức
P= \(\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)
Với x, y, z là các số thực thỏa măn: x+y+z +xy +yz +xz = 6
Tìm GTNN cảu biểu thức:
\(P=\sqrt{4+x^4}+\sqrt{4+y^4}+\sqrt{4+z^4}\)
cho x, y, z là các số dương thỏa mãn điều kiện x+ y+ z lớn hơn hoặc bằng 12
tìm GTNN của biểu thức P= x/ căn y + y/ căn z + z/ căn x
Giả sử: x,y,z là các số thực dương thoả mãn \(x+z\le2y\) và \(x^2+y^2+z^2=1\)
Tìm giá trị lớn nhất của biểu thức \(P=\frac{xy}{1+z^2}+\frac{yz}{1+x^2}-y^3\left(\frac{1}{x^3}+\frac{1}{z^3}\right)\)
Cho các số thực dương x, y, z thỏa mãn: \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2018\)
Tìm giá trị nhỏ nhất của biểu thức:\(T=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)