Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Anonymous

Cho các số thực x,y,z lớn hơn hoặc bằng 1 thỏa mãn 2x^2 + 3y^2 + 4z^2 =21. Tìm giá trị nhỏ nhất của M = x+y+z

Nguyễn Việt Lâm
8 tháng 1 2023 lúc 21:20

\(2x^2+3y^2+4z^2=21\Rightarrow2x^2\le21-3.1^2-4.1^2=14\)

\(\Rightarrow x\le\sqrt{7}\)

Tương tự ta có \(y\le\sqrt{5}\) và \(z\le2\)

Do đó:

\(\left(z-1\right)\left(z-2\right)\le0\Rightarrow z^2+2\le3z\Rightarrow4z^2+8\le12z\) (1)

\(\left(x-1\right)\left(2x-10\right)\le0\Rightarrow2x^2+10\le12x\) (2)

\(\left(y-1\right)\left(3y-9\right)\le0\Leftrightarrow3y^2+9\le12y\) (3)

Cộng vế (1);(2) và (3):

\(\Rightarrow12\left(x+y+z\right)\ge2x^2+3y^2+4z^2+27\ge48\)

\(\Rightarrow x+y+z\ge4\)

\(M_{min}=4\) khi \(\left(x;y;z\right)=\left(1;1;2\right)\)

Nguyễn Việt Lâm
8 tháng 1 2023 lúc 22:20

Theo chứng minh ban đầu ta có: \(z\le2\Rightarrow z-2\le0\)

Theo giả thiết \(z\ge1\Rightarrow z-1\ge0\)

\(\Rightarrow\left(z-1\right)\left(z-2\right)\le0\)

Tương tự: \(x< \sqrt{5}< 5\Rightarrow x-5< 0\Rightarrow2x-10< 0\)

\(\Rightarrow\left(x-1\right)\left(2x-10\right)\le0\)

y cũng như vậy

 


Các câu hỏi tương tự
Trần Công Hưng
Xem chi tiết
Học Sinh Giỏi Anh
Xem chi tiết
Hoàng Đức Trung
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Phuc Nguyen
Xem chi tiết
nguyen kim chi
Xem chi tiết
Trương Krystal
Xem chi tiết
Võ Nguyên Duy Hậu
Xem chi tiết
Huy Anh Lê
Xem chi tiết