Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Đức Nghĩa( E)

Cho các số thực x,y,z đôi 1 khác nhau và x+y+z=0 tính giá trị

P=\(\frac{\left(4yz-x^2\right)\left(4zx-y^2\right)\left(4xy-z^2\right)}{\left(yz+2x^2\right)\left(zx+2y^2\right)\left(xy+2z^2\right)}\)

Do \(x+y+z=0\)

\(\Rightarrow x=-\left(y+z\right)\Rightarrow x^2=\left(y+z\right)^2\Rightarrow4yz-x^2=4yz-\left(y+z^2\right)=-\left(y-z\right)^2\)

Tương tự \(4zx-y^2=-\left(z-x\right)^2\)

               \(4xy-z^2=-\left(x-y\right)^2\)

Ta lại có: \(yz+2x^2=yz+x^2-x\left(y+z\right)=yz+x^2-xy-xz=\left(x-y\right)\left(x-z\right)\)

Tương tự: \(zx+2y^2=\left(y-x\right)\left(y-z\right)\)

                \(xy+2z^2=\left(y-z\right)\left(y-y\right)\)

\(P=\frac{\left(4yz-x^2\right)\left(4zx-y^2\right)\left(4xy-z^2\right)}{\left(yz+2x^2\right)\left(zx+2y^2\right)\left(xy+2z^2\right)}=\frac{-\left(y-z\right)^2\left(z-x\right)^2\left(x-y^2\right)}{\left(x-y\right)\left(x-z\right)\left(y-x\right)\left(y-z\right)\left(z-x\right)\left(z-y\right)}\)

\(=\frac{-\left(y-z\right)^2\left(z-x\right)^2\left(x-y\right)^2}{-\left(y-z\right)^2\left(z-x\right)^2\left(x-y\right)^2}=1\)


Các câu hỏi tương tự
Hà My Trần
Xem chi tiết
Ngô Minh Tâm
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Quyết Tâm Chiến Thắng
Xem chi tiết
ta thi hong hai Tathpthu...
Xem chi tiết
Cù Hương Ly
Xem chi tiết
yên phong
Xem chi tiết
Trà Nhật Đông
Xem chi tiết
Blue Frost
Xem chi tiết