Bài 1: cho x,y là các số thực thõa mãn \(\sqrt{x+2}-y^3=\sqrt{y+3}-x^3.\)
tìm MIN của \(B=x^2-2y^2+2xy+2y+10\)
Bài 2: cho 3 số thực x,y,z thỏa mãn \(x^2+y^2+z^2=3\)
tìm MAX và MIN của \(P=x+y+2z\)
cho các số thực x,y thỏa mãn
\(x-\sqrt{x+6}=\sqrt{y+6}-y\) y
tìm max và min của biểu thức P=x+y
Cho hai số thực x,y thoả mãn \(x-\sqrt{y+6}=\sqrt{x+6}-y\). Tìm Min và Max của \(P=x+y\)
Cho x,y,z là 3 số thực dương thõa mãn x+y+z\(\le\frac{3}{2}\). Tìm Min A=\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\)
Cho các số thực x, y thỏa mãn: \(x^2+y^2+xy-6\left(x+y\right)+11=0\)
Tìm min và max của P = 2x + y
Cho x, y là 2 số thực thoả mãn:
\(\sqrt{x+1}+\sqrt{y+1}=\sqrt{2}\left(x+y\right)\)
Tìm Min và Max của biểu thức: P = x + y
với các số thực x,y thỏa mãn:
x-căn(x+6) = căn(y+6)-y.
tìm MIN MAX của P=x+y
1. Cho x,y là 2 số thực khác 0 thỏa mãn :5x2 +\(\frac{y^2}{4}\)+\(\frac{1}{4x^2}\)=\(\frac{5}{2}\).Tìm min, max của A=2013-xy
2.Cho x,y>0 thỏa mãn x+y=1.Tìm min của A=\(\frac{1}{x^2+y^2}\)+\(\frac{2}{xy}\)+4xy
3.Cho x,y là 2 số dương thoả mãn x+\(\frac{1}{y}\)\(\le\)1. Tìm min của C=32.\(\frac{x}{y}\)+2011.\(\frac{y}{x}\)
4.Cho x,y là 2 số thực dương thỏa mãn x+y=\(\frac{5}{4}\). Tìm min của A=\(\frac{4}{x}\)+\(\frac{1}{4y}\)
5.Giải phương trình : \(\frac{1}{\sqrt{x+3}+\sqrt{x+2}}\)+\(\frac{1}{\sqrt{x+2}+\sqrt{x+1}}\)+\(\frac{1}{\sqrt{x+1}+\sqrt{x}}\)=1
cho x,y,z là các số thực thỏa mãn 2(y^2 + yz + z^2) + 3x^2 =36 Tìm min và max A=x+y+z