cho các số x,y thỏa mãn \(x\ge0\), \(y\ge0\)và x+y =1 . tìm GTLN , GTNN của A = x2+y2
Cho các số x,y thỏa mãn \(x\ge0\) ; \(y\ge0\) và x + y = 1
Tìm GTLN và GTNN của \(A=x^2+y^2\)
Cho x,y là các số thực thỏa mãn:\(x,y\ge0\) và 1=x^2+y^2.CMR: 1/căn 2<= x^3+y^3<=1
Giúp mk với ạ.<= là nhỏ hơn hoặc bằng nha
Cho \(x,y,z\ge0\) thỏa mãn x+y+z=3
Tìm GTNN và GTLN của \(S=x^2+y^2+z^2+\frac{9}{2}xyz\)
Cho 3 số \(x,y,z\ge0\)thỏa mãn: \(x^{2016}+y^{2016}+z^{2016}=3\). Tìm GTLN của: \(M=x^2+y^2+z^2\)
Cho \(x\ge0,y\ge0\) và thỏa mãn \(x+y=1\). Tìm giá trị lớn nhất của biểu thức: \(A=x^2y^2\left(x^2+y^2\right)\)
Cho x, y \(\ge0\) thỏa mãn : x3 + y3 = 1. Tìm GTLN: \(S=\sqrt{x}+2\sqrt{y}\)
Bài 1: Cho a,b>0 thỏa mãn \(\hept{\begin{cases}a\ge3\\ab\ge6\end{cases}}\). Tìm GTNN của \(S=a^2+b^2\)
Bài 2: Cho x,y,z\(\ge0\)thỏa mãn xy+yz+zx=100.
Tìm GTN của A=xyz
Bài 3: Với giá trị nào của a thì tích xy nhận GTLN nếu x,y,a là các số thực thỏa mãn \(\hept{\begin{cases}x=a^2\\\frac{1}{y}=a^4+4\end{cases}}\)
tìm các số thực x,y,z thỏa mãn:
\(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
(điều kiện: \(x\ge0;y\ge1;z\ge2\))