tính các số hữu tỉ x,y,z biết các số đó thỏa mãn điều kiện xy=1/3 ; yz=-2/5 và xz=-3/10
Cho x,y,z là các số khác 0 và x2=yz,y2=xz,z2=xy. Chứng minh x=y=z
cho x,y,z khác 0 thỏa mãn xy/x+y=yz/y+z=xz/x+z
tính giá trị của M=\(\frac{x^2+y^2+z^2}{xy+xz+yz}\)
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\)Cho các số thực x,y,z\(\ne\)0(sau). Tính giá trị biểu thức M\(=\frac{x^{^2}+y^2+z^2}{xy+yz+xz}\). Giúp mình với.
cho \(\frac{xy}{x+y}=\frac{yz}{y+z}\)\(=\frac{xz}{x+z}\)
Tính \(M=\frac{x^2+y^2+z^2}{xy+yz+xz}\)
Cho các số thực x,y,z khác 0 thoả mãn :\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\)
Tính giá trị của biểu thức : M = \(\frac{x^2+y^2+z^2}{xy+yz+xz}\)
Cho các số thực x, y, z \(\ne\)0 thỏa mãn \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\)
Tính giá trị của biểu thức \(M=\frac{x^2+y^2+z^2}{xy+yz+xz}\)
cho x,y,z thoa man x^2=yz;y^2=xz;z^2=xy CMR x=y=z
cho x,y,z thỏa mãng: x^2=yz, y^2=xz,z^2=xy. cmrx=y=z