Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thầy Tùng Dương

Cho các số thực không âm $a, b, c$ thỏa mãn: $a+b+c=2021$. Tìm giá trị lớn nhất và giả trị nhỏ nhất của biểu thức: $P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}$.

Vũ Ngọc Anh
9 tháng 5 2022 lúc 11:06

\(P=\sqrt{a+b}+\sqrt{b+c}\sqrt{c+a}\)

Aps dụng Bunhia-cốpxki : \(P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)\le\left(1+1+1\right)\left(a+b+b+c+c+a\right)\)

\(=6\left(a+b+c\right)\)

\(=6.2021=12126\Leftrightarrow P=\sqrt{12126}\)

Vậy \(Max\left(P\right)=\sqrt{12126}\Leftrightarrow a=b=c=\dfrac{2021}{3}\)

(Refer ;-;)


Các câu hỏi tương tự
Thầy Tùng Dương
Xem chi tiết
Thầy Tùng Dương
Xem chi tiết
Thầy Tùng Dương
Xem chi tiết
Thầy Tùng Dương
Xem chi tiết
Thầy Tùng Dương
Xem chi tiết
Thầy Tùng Dương
Xem chi tiết