\(\frac{1}{\sqrt{x\left(3y+5z\right)}}+\frac{1}{\sqrt{y\left(3z+5x\right)}}+\frac{1}{\sqrt{z\left(3x+5y\right)}}\ge\frac{9}{\sqrt{x\left(3y+5z\right)}+\sqrt{y\left(3z+5x\right)}+\sqrt{z\left(3x+5y\right)}}\)
Có:\(\left(\sqrt{x\left(3y+5z\right)}+\sqrt{y\left(3z+5x\right)}+\sqrt{z\left(3x+5y\right)}\right)^2\le\left(x+y+z\right)\left(3y+5z+3z+5x+3x+5y\right)\)(bunhiacopxki)
\(\Rightarrow\sqrt{x\left(3y+5z\right)}+\sqrt{y\left(3z+5x\right)}+\sqrt{z\left(3x+5y\right)}\le8\left(x+y+z\right)^2=144\)
\(\Rightarrow\frac{9}{\sqrt{x\left(3y+5z\right)}+\sqrt{y\left(3z+5x\right)}+\sqrt{z\left(3x+5y\right)}}\ge\frac{9}{12}=\frac{3}{4}\)
-> đpcm
Dấu "=" xảy ra <=> x=y=z=căn 2