Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tạ Duy Phương

Cho các số thực dương x,y,z thỏa mãn xyz = 1. CMR:  \(\frac{1}{\left(x+1\right)^2}+\frac{1}{\left(y+1\right)^2}+\frac{1}{\left(z+1\right)^2}\ge\frac{3}{4}\)

Trần Đức Thắng
11 tháng 1 2016 lúc 17:30

Áp dụng BĐT cô si với ba số không âm ta có :

\(\frac{1}{\left(x+1\right)^2}+\frac{x+1}{8}+\frac{x+1}{8}\ge3\sqrt[3]{\frac{1}{64}}=\frac{3}{4}\)

=> \(\frac{1}{\left(x+1\right)^2}\ge\frac{3}{4}-\frac{x+1}{4}\) (1)

Dấu '' = '' xảy ra khi x = 1 

CM tương tự ra có " \(\frac{1}{\left(y+1\right)^2}\ge\frac{3}{4}-\frac{y+1}{4}\)(2) ; \(\frac{1}{\left(z+1\right)^2}\ge\frac{3}{4}-\frac{z+1}{4}\) (3)

Dấu ''= '' xảy ra khi y = 1 ; z = 1 

Từ (1) (2) và (3) => \(\frac{1}{\left(x+1\right)^2}+\frac{1}{\left(y+1\right)^2}+\frac{1}{\left(z+1\right)^2}\ge\frac{3}{4}\cdot3-\frac{x+y+z+3}{4}\)\(\ge\frac{9}{4}-\frac{3\sqrt[3]{xyz}+3}{4}=\frac{9}{4}-\frac{6}{4}=\frac{3}{4}\)

BĐT được chứng minh 

Dấu '' = '' của bất đẳng thức xảy ra khi x =y =z = 1

 


Các câu hỏi tương tự
Lyzimi
Xem chi tiết
Nguyễn Vũ Thắng
Xem chi tiết
Giao Khánh Linh
Xem chi tiết
Momozono Nanami
Xem chi tiết
dekhisuki
Xem chi tiết
Lê Chí Cường
Xem chi tiết
Trịnh Quỳnh Nhi
Xem chi tiết
KJ kun
Xem chi tiết
Dương Thiên Tuệ
Xem chi tiết