trong đề thi HSG tỉnh thanh hóa năm 2010-2011(đánh lên mạng đi,hình như là bài 5)
trong đề thi HSG tỉnh thanh hóa năm 2010-2011(đánh lên mạng đi,hình như là bài 5)
Cho các số thực dương x,y thỏa mãn: \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2017.\)
Timg giá trị nhỏ nhất của biểu thức: \(T=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Cho x,y,z là các số dương thay đổi và luôn thỏa mãn điều kiện xyz=1. Tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
Cho x, y, z là 3 số thực dương. Tìm giá trị nhỏ nhất của biểu thức: \(\frac{\sqrt{x^2-xy+y^2}}{x+y+2z}+\frac{\sqrt{y^2-yz+z^2}}{y+z+2x}+\frac{\sqrt{z^2-zx+x^2}}{z+x+2y}\)
mọi người giải hộ mình bài này đi
cho 3 số thực dương x, y, z thỏa mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2016\)
Hãy tìm giá trị nhỏ nhất của biểu thức
\(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Cho x,y,z là ba số thực dương .Tìm giá trị nhỏ nhất của biểu thức :
\(S=\frac{\sqrt{x^2-xy+y^2}}{x+y+2z}+\frac{\sqrt{y^2-yz+z^2}}{y+z+2x}+\frac{\sqrt{z^2-zx+x^2}}{z+x+2y}\)
Cho ba số dương x,y,z thỏa mãn \(\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{z}+\sqrt{x}}=3\)
Tìm giá trị nhỏ nhất của biểu thức:
\(A=\frac{1}{3\sqrt{x}+3\sqrt{y}+2\sqrt{z}}+\frac{1}{3\sqrt{x}+2\sqrt{y}+3\sqrt{z}}+\frac{1}{2\sqrt{x}+3\sqrt{y}+3\sqrt{z}}\)
\(\text{Với x,y,z là các số thực dương thay đổi và thỏa mãn 1/x+1/y+1/z=3. Tìm giá trị lớn nhất của biểu thức}:P=\frac{1}{\sqrt{2x^2+y^2+3}}+\frac{1}{\sqrt{2y^2+z^2+3}}+\frac{1}{\sqrt{2z^2+x^2+3}}\)
cho x;y;z là các số thực dương thõa mãn : x + y + z = xyz
Tìm giá trị lớn nhất của biểu thức P = \(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\)
cho x, y,z là các số thực dương thỏa mãn \(^{x^3+y^3+z^3=1}\)
chứng minh rằng:
Giá trị của biểu thức \(A=\frac{x^2}{\sqrt{1-x^2}}+\frac{^{y^2}}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}>2\)