Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
hiển nguyễn văn

cho các số thực dương x,y,z thỏa mãn điều kiện \(x\sqrt{2020-y^2}+y\sqrt{2020-z^2}+z\sqrt{2020-x^2}\) =3030 . tính giá trị của biểu thức \(A=x^2+y^2+z^2\)

Trên con đường thành côn...
30 tháng 10 2021 lúc 21:13

ĐKXĐ: \(\left\{{}\begin{matrix}2020-y^2\ge0\\2020-z^2\ge0\\2020-x^2\ge0\end{matrix}\right.\)

Ta có:

\(x\sqrt{2020-y^2}+y\sqrt{2020-z^2}+z\sqrt{2020-x^2}=3030\)

\(\Leftrightarrow2x\sqrt{2020-y^2}+2y\sqrt{2020-z^2}+2z\sqrt{2020-x^2}=6060\)

\(\Leftrightarrow2020-y^2-2x\sqrt{2020-y^2}+x^2+2020-z^2-2y\sqrt{2020-z^2}+y^2+2020-x^2-2z\sqrt{2020-x^2}+z^2=0\)

   \(\Leftrightarrow\left(\sqrt{2020-y^2}-x\right)^2+\left(\sqrt{2020-z^2}-y\right)^2+\left(\sqrt{2020-x^2}-z\right)^2=0\)

\(\Leftrightarrow\left(\sqrt{2020-y^2}-x\right)^2=\left(\sqrt{2020-z^2}-y\right)^2=\left(\sqrt{2020-x^2}-z\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2020-y^2}=x\\\sqrt{2020-z^2}=y\\\sqrt{2020-x^2}=z\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2020-y^2=x^2\\2020-z^2=y^2\\2020-x^2=z^2\end{matrix}\right.\)(vì \(x,y,z>0\))

\(\Leftrightarrow\left\{{}\begin{matrix}2020=x^2+y^2\\2020=y^2+z^2\\2020=z^2+x^2\end{matrix}\right.\)

\(\Rightarrow2\left(x^2+y^2+z^2\right)=3.2020\)

\(\Rightarrow x^2+y^2+z^2=3.1010=3030\)

\(\Rightarrow A=x^2+y^2+z^2=3030\)

Vậy \(A=3030\)

 

 


Các câu hỏi tương tự
Lê Quỳnh Chi Phạm
Xem chi tiết
꧁Gιʏuu ~ Cнᴀɴ꧂
Xem chi tiết
Kaneki Ken
Xem chi tiết
๖ۣۜLuyri Vũ๖ۣۜ
Xem chi tiết
Huy Hoang
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Blue Moon
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Ngô Minh Tâm
Xem chi tiết