Áp dụng BĐT Svácxơ, ta có:
\(\dfrac{a^2}{b+1}+\dfrac{b^2}{c+1}+\dfrac{c^2}{a+1}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3}=\dfrac{81}{12}=\dfrac{27}{4}\)
Dấu "=" ⇔ a=b=c=3
Áp dụng BĐT Cô-si:
\(\dfrac{a^2}{b+1}+\dfrac{9}{16}\left(b+1\right)\ge2\sqrt{\dfrac{9a^2\left(b+1\right)}{16\left(b+1\right)}}=\dfrac{3a}{2}\)
Tương tự: \(\dfrac{b^2}{c+1}+\dfrac{9}{16}\left(c+1\right)\ge\dfrac{3b}{2}\) ; \(\dfrac{c^2}{a+1}+\dfrac{9}{16}\left(a+1\right)\ge\dfrac{3c}{2}\)
Cộng vế:
\(VT+\dfrac{9}{16}\left(a+b+c+3\right)\ge\dfrac{3}{2}\left(a+b+c\right)\)
\(\Leftrightarrow VT+\dfrac{27}{4}\ge\dfrac{27}{2}\Rightarrow VT\ge\dfrac{27}{4}\)
Dấu "=" xảy ra khi \(a=b=c=3\)