Cho ba số thực dương a,b,c.Chứng minh rằng
\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^2}}+\sqrt{\frac{b^3}{b^3+\left(c+a\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\)
Cho a, b, c là các số thực dương thỏa mãn a + b + c = 1. Chứng minh rằng: \(\frac{\sqrt{a^2+abc}}{c+ab}+\frac{\sqrt{b^2+abc}}{a+bc}+\frac{\sqrt{c^2+abc}}{b+ca}\le\frac{1}{2\sqrt{abc}}\)
Cho các số thực dương a,b,c.Chứng minh rằng:
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\sqrt{3\left(ab+bc+ca\right)}}\)
Cho a, b, c là các số thực dương thỏa mãn a + b + c = 3. Chứng minh rằng: \(\sqrt{\frac{a+3}{a+bc}}+\sqrt{\frac{b+3}{b+ca}}+\sqrt{\frac{c+3}{c+ab}}\ge3\sqrt{2}\)
Cho a, b, c là các số thực dương thỏa mãn : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Chứng minh rằng \(\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\ge\sqrt{abc}+\sqrt{a}+\sqrt{b}+\sqrt{c}\)
Cho 3 số a,b,c.Chứng minh rằng:
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a\sqrt{ac}+b\sqrt{ab}+c\sqrt{bc}\)
Bài 1: Cho các số thực dương x,y,z. Chứng minh rằng:
\(\frac{x}{\sqrt{2xy+y^2}}+\frac{y}{\sqrt{2yz+z^2}}+\frac{z}{\sqrt{2zx+x^2}}\ge\sqrt{3}\)
Bài 2: Cho a,b,c là các số thực dương thỏa mãn: \(a+b+c=3\)
Tìm min của \(P=\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}}+\frac{c}{\sqrt{a}}\)
Bài 3: Cho a,b,c là các số thực dương. Chứng minh rằng:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{a^2+b^2-ab}+\sqrt{b^2+c^2-bc}+\sqrt{c^2+a^2-ca}\)
Rảnh rỗi :D
1)cho a,b,c là các số nguyên dương thỏa mãn đẳng thức \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=2\)\(\)chứng minh rằng
\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}\ge1\)
2)với a,b,c là các số thực dương chứng minh rằng :\(\sqrt{a^2+b^2-3\sqrt{ab}}+\sqrt{b^2+c^2-bc}\ge\sqrt{a^2+c^2}\)
Cho a,b,c là các số thực dương thỏa mãn: a+b+c=abc. Chứng minh rằng:
\(\frac{b}{a\sqrt{b^2+1}}+\frac{c}{b\sqrt{c^2+1}}+\frac{a}{c\sqrt{a^2+1}}\ge\frac{3}{2}\)