Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vinh Lê Thành

Cho các số thực dương a,b,c thỏa mãn a+b+c=3.Chứng minh \(\frac{1}{2+a^2b}+\frac{1}{2+b^2c}+\frac{1}{2+c^2a}\ge1\)

Toi da tro lai va te hai...
31 tháng 5 2020 lúc 10:51

\(1-\frac{a^2b}{2+a^2b}\ge1-\frac{a^2b}{3.\sqrt[3]{a^2b}}\)\(\rightarrow1-3\sqrt[3]{a^4b^2}=3.\sqrt[3]{ab.ab.a^2}\rightarrow.....\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
31 tháng 5 2020 lúc 10:53

BĐT cần chứng minh tương đương với \(\frac{a^2b}{2+a^2b}+\frac{b^2c}{2+b^2c}+\frac{c^2a}{2+c^2a}\le1\)

Áp dụng BĐT Cauchy ta có: \(2+a^2b=1+1+a^2b\ge3\sqrt[3]{a^2b}\)

Do đó ta được \(\frac{a^2b}{1+a^2b}\le\frac{a^2b}{3\sqrt[3]{a^2b}}=\frac{a\sqrt[3]{ab^2}}{3}\)

Hoàn toàn tương tự ta được \(\frac{a^2b}{2+a^2b}+\frac{b^2c}{2+b^2c}+\frac{c^2a}{2+c^2a}\le\frac{a\sqrt[3]{ab^2}+b\sqrt[3]{bc^2}+c\sqrt[3]{ca}}{3}\)

Cũng theo BĐT Cauchy ta được \(\sqrt[3]{ab^2}\le\frac{a+b+b}{3}=\frac{a+2b}{3}\)

\(\Rightarrow a\sqrt[3]{ab^2}\le\frac{a\left(a+2b\right)}{3}=\frac{a^2+2ab}{3}\)

Tương tự cũng được \(a\sqrt[3]{ab^2}+b\sqrt[3]{bc^2}+c\sqrt[3]{ca}\le\frac{\left(a+b+c\right)^2}{3}=3\)

Từ đó ta được\(\frac{a^2b}{2+a^2b}+\frac{b^2c}{2+b^2c}+\frac{c^2a}{2+c^2a}\le1\)

Vậy BĐT được chứng minh. Dấu "=" xảy ra <=> a=b=c=1

Khách vãng lai đã xóa
Lưu Thùy Dương
15 tháng 6 2020 lúc 17:36

1njfnjgjggnvfkgnbmvfvm 

Khách vãng lai đã xóa
Nguyễn Đức Nam
15 tháng 6 2020 lúc 17:45

1234567890

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Hương Giang
Xem chi tiết
Dung Tri
Xem chi tiết
Nguyễn Hải Minh
Xem chi tiết
Hà Phương Trần Thị
Xem chi tiết
nơi bóng ma ghé qua
Xem chi tiết
Lê Minh Đức
Xem chi tiết
Pham Thi Thanh Thuy
Xem chi tiết
Anh Minh Cù
Xem chi tiết
Chàng trai bóng đêm
Xem chi tiết