Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Nhật Minh

Cho các số thực DƯƠNG abc. Tìm giá trị nhỏ nhất của biểu thức \(Q=\frac{a^3+2}{ab+1}+\frac{b^3+2}{bc+1}+\frac{c^3+2}{ca+1}\).

Kiệt Nguyễn
20 tháng 7 2020 lúc 14:39

Sử dụng kết hợp hai bất đẳng thức Cauchy-Schwarz và AM - GM, ta được: \(\left(ab+1\right)^2\le\left(a^2+1\right)\left(b^2+1\right)=\left(a.a.1+1\right)\left(b.b.1+1\right)\)\(\le\left(\frac{a^3+a^3+1}{3}+1\right)\left(\frac{b^3+b^3+1}{3}+1\right)=\frac{4}{9}\left(a^3+2\right)\left(b^3+2\right)\)\(\Rightarrow ab+1\le\frac{2}{3}\sqrt{\left(a^3+2\right)\left(b^3+2\right)}\Rightarrow\frac{a^3+2}{ab+1}\ge\frac{3}{2}\sqrt{\frac{a^3+2}{b^3+2}}\)(1)

Hoàn toàn tương tự: \(\frac{b^3+2}{bc+1}\ge\frac{3}{2}\sqrt{\frac{b^3+2}{c^3+2}}\)(2); \(\frac{c^3+2}{ca+1}\ge\frac{3}{2}\sqrt{\frac{c^3+2}{a^3+2}}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: 

\(Q=\frac{a^3+2}{ab+1}+\frac{b^3+2}{bc+1}+\frac{c^3+2}{ca+1}\ge\)\(\frac{3}{2}\left(\sqrt{\frac{a^3+2}{b^3+2}}+\sqrt{\frac{b^3+2}{c^3+2}}+\sqrt{\frac{c^3+2}{a^3+2}}\right)\)

\(\ge\frac{3}{2}.\sqrt[3]{\sqrt{\frac{a^3+2}{b^3+2}}.\sqrt{\frac{b^3+2}{c^3+2}}.\sqrt{\frac{c^3+2}{a^3+2}}}=\frac{3}{2}\)(Áp dụng BĐT AM - GM)

Đẳng thức xảy ra khi a = b = c = 1

Khách vãng lai đã xóa

Các câu hỏi tương tự
thục khuê nguyễn
Xem chi tiết
Nguyễn Tuấn Minh
Xem chi tiết
Trương Cao Phong
Xem chi tiết
Trần Mai Anh
Xem chi tiết
hung
Xem chi tiết
Lê Huỳnh
Xem chi tiết
Trịnh Như Ngọc
Xem chi tiết
pham trung thanh
Xem chi tiết
Nguyễn Khắc Quang
Xem chi tiết