Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
thánh yasuo lmht

Cho các số thực dương a, b, c thỏa mãn \(a^2+b^2+c^2=3\). Chứng minh:

\(\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}\ge a+b+c\)

Thắng Nguyễn
8 tháng 2 2017 lúc 13:26

\(BDT\LeftrightarrowΣ\frac{a^2}{a+b^2}\ge\frac{a+b+c}{2}\)

Áp dụng BDT C-S dạng Engel ta có:

\(Σ\frac{a^2}{a+b^2}=\text{ }Σ\frac{a^4}{a^3+a^2b^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{Σa^3+a^2b^2}\)

Vậy đi chứng minh \(\frac{\left(a^2+b^2+c^2\right)^2}{Σa^3+a^2b^2}\ge\frac{a+b+c}{2}\)

Hay \(2\left(a^2+b^2+c^2\right)^2\ge\left(a+b+c\right)Σ\left(a^3+b^2c^2\right)\)

\(\hept{\begin{cases}a+b+c=3u\\ab+ac+bc=3v^2\\abc=w^3\end{cases}}\)

Bởi vì điều kiện không phụ thuộc vào \(w^3\), ta thấy rằng bất đẳng thức cuối cùng là một bất đẳng thức tuyến tính của \(w^3\), đủ để chứng minh rằng bất đẳng thức cuối cùng đạt một giá trị cực đại là \(w^3\), xảy ra trong trường hợp hai biến bằng nhau hoặc có thể cho \(w^3\rightarrow0^+\)

Sau khi biến đổi đồng nhất ta cần chứng minh.

 

\(\left(2\left(a^2+b^2+c^2\right)^2-\left(a+b+c\right)\left(a^3+b^3+c^3\right)\right)^2\left(a^2+b^2+c^2\right)\)

\(\ge3\left(a+b+c\right)^2\left(a^2b^2+a^2c^2+b^2c^2\right)^2\)

*)\(b=c=1\) Ta được

\(\left(a-1\right)^2\left(a^8-2a^7+17a^6-8a^5+75a^4-10a^3+73a^2-4a+20\right)\ge0\) ( hiển nhiên đúng)

*)\(w^3\rightarrow0^+\) để  \(c\rightarrow0^+\) và \(b=1\), ta đc:

\(a^{10}-2a^9+10a^8-12a^7+26a^6-26a^5+26a^4-12a^3+10a^2-2a+1\ge0\)( cũng đúng)

Thắng Nguyễn
8 tháng 2 2017 lúc 17:58

cách này phiêu quá lát mk làm lại

Thắng Nguyễn
8 tháng 2 2017 lúc 20:21

Khi \(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\), viết lại BĐT cần chứng minh

\(\frac{a^2}{a+b^2}+\frac{b^2}{b+c^2}+\frac{c^2}{c+a^2}\ge\frac{3}{2}\)

Đặt \(\hept{\begin{cases}a^2=x\\b^2=y\\c^2=z\end{cases}}\) ta có \(x+y+z=3\). Áp dụng AM-GM và Cauchy-Schwarz ta có:

\(Σ\frac{a^2}{a+b^2}=Σ\frac{x}{\sqrt{x}+y}=Σ\frac{x}{\sqrt{\frac{x\left(x+y+z\right)}{3}+y}}\)

\(=Σ\frac{6x}{2\sqrt{3x\left(x+y+z\right)}+6y}\geΣ\frac{6x}{3x+x+y+z+6y}=Σ\frac{6x}{4x+7y+z}\)

\(=Σ\frac{6x^2}{4x^2+7xy+xz}\ge\frac{6\left(x+y+z\right)^2}{Σ\left(4x^2+7xy+xz\right)}=\frac{3}{2}\) 

Hoàn thành!


Các câu hỏi tương tự
Nguyễn Đức Gia Minh
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết
Đặng Công Minh Nghĩa
Xem chi tiết
Siêu Nhân Lê
Xem chi tiết
Đoàn Phương Liên
Xem chi tiết
Tùng Nguyễn
Xem chi tiết
Yim Yim
Xem chi tiết