Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lyzimi

cho các số thực dương a, b, c sao cho abc=1

cm \(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ca}\le1\)

Minh Triều
23 tháng 1 2017 lúc 22:19

\(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ca}\)

=\(\frac{1}{abc}.\left(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ca}\right)\)

=\(\frac{1}{a^5c+b^5c+abc}+\frac{1}{b^5a+c^5a+abc}+\frac{1}{c^5b+a^5b+abc}\)

\(\le\)\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\)

Ta có : a3+b3=(a+b)(a2-ab+b2)\(\ge\)ab(a+b) (cosi)

Tương tự ta được:

b3+c3\(\ge bc\left(b+c\right)\)

c3+a3\(\ge ca\left(c+a\right)\)

Như vậy \(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ca}\)

\(\le\)\(\frac{1}{ab\left(a+b\right)+abc}+\frac{1}{bc\left(b+c\right)+abc}+\frac{1}{ca\left(c+a\right)+abc}\)

=\(\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)

=\(\frac{1}{a+b+c}.\left(\frac{a+b+c}{ab+bc+ca}\right)=\frac{1}{ab+bc+ca}\le1\)

ngonhuminh
24 tháng 1 2017 lúc 7:37

​mình tò mò muốn biết BĐT trên đẳng thức khi nào nhỉ

ngonhuminh
24 tháng 1 2017 lúc 9:30

Không phải chới đâu BĐT cuối của bạn không bao giờ =1 được

\(\frac{1}{ab+bc+ac}\le\frac{1}{3}\) Đẳng thức khi a=b=c=1

p/s: đoạn trước bạn viết loạn lên chưa cần xem

Minh Triều
24 tháng 1 2017 lúc 11:10

nhân nhầm thôi, khúc cuối là 

=\(\frac{1}{a+b+c}.\left(\frac{a+b+c}{abc}\right)=\frac{1}{abc}=1\)

ngonhuminh
24 tháng 1 2017 lúc 13:37

thế hóa ra:

abc=ac+bc+ab hả

%Hz@
14 tháng 3 2020 lúc 14:27

\(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ca}\)

\(=\frac{1}{abc}.\left(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ca}\right)\)

\(=\frac{1}{a^5c+b^5c+abc}+\frac{1}{b^5a+c^5a+abc}+\frac{1}{c^5b+a^5b+abc}\)

\(\le\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\)

áp dụng cô si

Khách vãng lai đã xóa

Các câu hỏi tương tự
Trần Đức Thắng
Xem chi tiết
lyzimi
Xem chi tiết
Tuệ Linh Võ
Xem chi tiết
Duong Thi Minh
Xem chi tiết
Lyzimi
Xem chi tiết
Nguyễn Anh Kim Hân
Xem chi tiết
Thanh Tâm
Xem chi tiết
shitbo
Xem chi tiết
Lê Châu Linh
Xem chi tiết