Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Kim Thành

Cho các số thực a,b,c thỏa mãn điều kiện \(a\ge1,b\ge1,c\ge1\)

Chứng minh rằng : \(\dfrac{1}{2a-1}+\dfrac{1}{2b-1}+\dfrac{1}{2c-1}+\dfrac{4ab}{ab+1}+\dfrac{4bc}{bc+1}+\dfrac{4ac}{ac+1}\ge9\)

 

Nguyễn Việt Lâm
6 tháng 3 2021 lúc 0:42

\(VT\ge\dfrac{1}{\left(a^2+1\right)-1}+\dfrac{1}{\left(b^2+1\right)-1}+\dfrac{1}{\left(c^2+1\right)-1}+4-\dfrac{4}{ab+1}+4-\dfrac{4}{bc+1}+4-\dfrac{4}{ca+1}\)

\(VT\ge\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}-\dfrac{4}{ab+1}-\dfrac{4}{bc+1}-\dfrac{4}{ca+1}+12\)

Mặt khác \(a;b;c\ge1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab+1\ge a+b\) (và tương tự...)

\(\Rightarrow VT\ge\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}-\dfrac{4}{a+b}-\dfrac{4}{b+c}-\dfrac{4}{c+a}+12\)

\(VT\ge\dfrac{4}{\left(a+b\right)^2}+\dfrac{4}{\left(b+c\right)^2}+\dfrac{4}{\left(c+a\right)^2}-\dfrac{4}{a+b}-\dfrac{4}{b+c}-\dfrac{4}{c+a}+1+1+1+9\)

\(VT\ge\left(\dfrac{2}{a+b}-1\right)^2+\left(\dfrac{2}{b+c}-1\right)^2+\left(\dfrac{2}{c+a}-1\right)^2+9\ge9\)


Các câu hỏi tương tự
Thị Thiệm Lê
Xem chi tiết
Hải Đăng
Xem chi tiết
bepro_vn
Xem chi tiết
Dương Thị Thu Hiền
Xem chi tiết
mai  love N
Xem chi tiết
missing you =
Xem chi tiết
Mai Tuấn Hưng
Xem chi tiết
Chuyengia247
Xem chi tiết
Heo Peppa
Xem chi tiết