Cho a,b,c là độ dài ba cạnh của tam giác thỏa mãn (1+b/a)(1+c/b)(1+a/c)=8.Chứng minh tam giác đó đều
cho a,b,c là các số dương thỏa mãn (a^2 + b ^2 + c^2 )^2 > 2(a^2 + b^2 + c^2) chứng minh rằng a,b,c là độ dài 3 cạnh của 1 tam giác
Cho a, b, c là độ dài ba cạnh của một tam giác. Chứng minh rằng
a / b + c + b / c + a + c / c + b nhỏ hơn 2
Cho tam giác có độ dài 3 cạnh là a, b, c thỏa mãn: a^2+ b^2+c^2 =ab+bc+ac. Chứng minh: Tam giác đó đều.
Cho a, b, c là độ dài ba cạnh của một tam giác và thỏa mãn: \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)
Chứng minh rằng tam giác đó là tam giác đều.
BT1: Cho a,b,c thỏa mãn (a2+b2+c2)<2(a4+b4+c4)
Chứng minh rằng a,b,c là độ dài các cạnh của tam giác
cho tam giác abc có bc=a ac=b ab=c
a/chứng minh rằng nếu góc a = 2 lần góc b thì a^2=b^2+bc và ngược lại
b/tính độ dài các cạnh của tam giác abc thỏa điều kiện trên biết độ dài ba cạnh tam giác là 3 số tự nhiên liên tiếp
Cho tam giác ABC có độ dài ba cạnh là: a,b,c. Thỏa mãn điều kiện a3+b3+c3= 3abc. Chứng minh tam giác ABC là tam giác đều
Chứng minh rằng nếu các cạnh a,b,c cua tam giác thỏa mãn a^2=b^2+bc thì góc A= 2 góc B và ngược lại. Với a,b,c là độ dài các cạnh đối diện với góc A, B, C
1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2,
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp
5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)