cho các số thực a,b,c thỏa mãn : \(a^2+b^2+c^2\le8\). Tìm GTNN của biểu thức S=2016ac-ab-bc
cho các số thực a,b,c thỏa mãn \(a^2+b^2+c^2\le8\)
tìm giá trị nhỏ nhất của biểu thức \(S=2016ac-ab-bc\)
b1. Cho biểu thức \(A=\left(\frac{4x}{2+x}+\frac{8x^2}{4-x^2}\right):\left(\frac{x-1}{x^2-2x}-\frac{2}{x}\right)\)rút gọn A và tìm giá trị của x để A<0
b2. a) Tìm các số nguyên x, y thỏa mãn \(x^3+3x=x^2y+2y+5\)
b)tìm các số nguyên x; y thỏa mãn \(18x^2-3xy-5y=25\)
b3. cho các số thực a, b, c thỏa mãn \(a^2+b^2+c^2\le8\). Tìm GTNN của biểu thức sau: S= 2016ac-ab-bc
lm hộ mk vsss mn
Cho a, b, c là các số thực dương thay đổi thỏa mãn điều kiện: a+b+c=1.
Tìm GTNN của biểu thức:
M=14(\(a^2\)+\(b^2\)+\(c^2\))+\(\dfrac{ab+ac+bc}{a^2b+b^2c+c^2a}\)
Bài 1: Cho a,b,c là các số thực dương thỏa nãm a+b+c=1. Tìm GTNN của biểu thức
\(H=\frac{a+bc}{b+c}+\frac{b+ca}{c+a}+\frac{c+ab}{a+b}\)
Bài 2:Cho a,b là các số thực dương thỏa mãn \(a^2-6ab-2b^2=0\)
Tính giá trị của biểu thức \(P=\frac{ab}{a^2+2b^2}\)
Cho các số thực a, b, c thỏa mãn \(a^2+b^2+c^2+abc=4\). Tìm GTNN của biểu thức \(P=\frac{ab}{a+2b}+\frac{bc}{b+2c}+\frac{ca}{c+2a}\)
câu1:
a) Cho các số thực không âm a, b, c thỏa mãn a + b + c =1. Tìm giá trị lớn nhất và giá trị nhỏ
nhất của biểu thức:
P=\(\frac{ab+bc+ca-abc}{a+2b+c}\)
b) Cho các số thực a, b, c thỏa mãn \(^{a^2+b^2+c^2=1}\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P =ab +bc + ca .
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1. Tìm GTNN của M=1/18(ab+bc+ca)-a^2/3a+1-b^2/3b+1-c^2/3c+1
cho các số thực a,b thỏa mãn a^3 - 2b^3 = ab(a - 2b). Tìm GTNN của biểu thức P = a^2 + b^2 + 2a + 4b + 10